Fixing behavior of Threads_CloneTCB
[tpg/acess2.git] / Kernel / arch / x86 / proc.c
1 /*
2  * AcessOS Microkernel Version
3  * proc.c
4  */
5 #include <acess.h>
6 #include <proc.h>
7 #include <desctab.h>
8 #include <mm_virt.h>
9 #include <errno.h>
10 #if USE_MP
11 # include <mp.h>
12 #endif
13
14 // === FLAGS ===
15 #define DEBUG_TRACE_SWITCH      0
16
17 // === CONSTANTS ===
18 #define SWITCH_MAGIC    0xFFFACE55      // There is no code in this area
19 // Base is 1193182
20 #define TIMER_DIVISOR   11931   //~100Hz
21
22 // === IMPORTS ===
23 extern tGDT     gGDT[];
24 extern tIDT     gIDT[];
25 extern void APStartup(void);    // 16-bit AP startup code
26 extern Uint     GetEIP(void);   // start.asm
27 extern int      GetCPUNum(void);        // start.asm
28 extern Uint32   gaInitPageDir[1024];    // start.asm
29 extern void     Kernel_Stack_Top;
30 extern tSpinlock        glThreadListLock;
31 extern int      giNumCPUs;
32 extern int      giNextTID;
33 extern int      giTotalTickets;
34 extern int      giNumActiveThreads;
35 extern tThread  gThreadZero;
36 extern tThread  *gActiveThreads;
37 extern tThread  *gSleepingThreads;
38 extern tThread  *gDeleteThreads;
39 extern tThread  *Threads_GetNextToRun(int CPU);
40 extern void     Threads_Dump(void);
41 extern tThread  *Threads_CloneTCB(Uint *Err, Uint Flags);
42 extern void     Isr8(void);     // Double Fault
43 extern void     Proc_ReturnToUser(void);
44
45 // === PROTOTYPES ===
46 void    ArchThreads_Init(void);
47 #if USE_MP
48 void    MP_StartAP(int CPU);
49 void    MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode);
50 #endif
51 void    Proc_Start(void);
52 tThread *Proc_GetCurThread(void);
53 void    Proc_ChangeStack(void);
54  int    Proc_Clone(Uint *Err, Uint Flags);
55 void    Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP);
56 void    Proc_CallFaultHandler(tThread *Thread);
57 void    Proc_Scheduler(int CPU);
58
59 // === GLOBALS ===
60 // --- Multiprocessing ---
61 #if USE_MP
62 volatile int    giNumInitingCPUs = 0;
63 tMPInfo *gMPFloatPtr = NULL;
64 tAPIC   *gpMP_LocalAPIC = NULL;
65 Uint8   gaAPIC_to_CPU[256] = {0};
66 tCPU    gaCPUs[MAX_CPUS];
67 #else
68 tThread *gCurrentThread = NULL;
69 #endif
70 #if USE_PAE
71 Uint32  *gPML4s[4] = NULL;
72 #endif
73 tTSS    *gTSSs = NULL;
74 tTSS    gTSS0 = {0};
75 // --- Error Recovery ---
76 char    gaDoubleFaultStack[1024];
77 tTSS    gDoubleFault_TSS = {
78         .ESP0 = (Uint)&gaDoubleFaultStack[1023],
79         .SS0 = 0x10,
80         .CR3 = (Uint)gaInitPageDir - KERNEL_BASE,
81         .EIP = (Uint)Isr8,
82         .ESP = (Uint)&gaDoubleFaultStack[1023],
83         .CS = 0x08,     .SS = 0x10,
84         .DS = 0x10,     .ES = 0x10,
85         .FS = 0x10,     .GS = 0x10,
86 };
87
88 // === CODE ===
89 /**
90  * \fn void ArchThreads_Init(void)
91  * \brief Starts the process scheduler
92  */
93 void ArchThreads_Init(void)
94 {
95         Uint    pos = 0;
96         
97         #if USE_MP
98         tMPTable        *mptable;
99         
100         // Mark BSP as active
101         gaCPUs[0].State = 2;
102         
103         // -- Initialise Multiprocessing
104         // Find MP Floating Table
105         // - EBDA/Last 1Kib (640KiB)
106         for(pos = KERNEL_BASE|0x9F000; pos < (KERNEL_BASE|0xA0000); pos += 16) {
107                 if( *(Uint*)(pos) == MPPTR_IDENT ) {
108                         Log("Possible %p", pos);
109                         if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
110                         gMPFloatPtr = (void*)pos;
111                         break;
112                 }
113         }
114         // - Last KiB (512KiB base mem)
115         if(!gMPFloatPtr) {
116                 for(pos = KERNEL_BASE|0x7F000; pos < (KERNEL_BASE|0x80000); pos += 16) {
117                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
118                                 Log("Possible %p", pos);
119                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
120                                 gMPFloatPtr = (void*)pos;
121                                 break;
122                         }
123                 }
124         }
125         // - BIOS ROM
126         if(!gMPFloatPtr) {
127                 for(pos = KERNEL_BASE|0xE0000; pos < (KERNEL_BASE|0x100000); pos += 16) {
128                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
129                                 Log("Possible %p", pos);
130                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
131                                 gMPFloatPtr = (void*)pos;
132                                 break;
133                         }
134                 }
135         }
136         
137         // If the MP Table Exists, parse it
138         if(gMPFloatPtr)
139         {
140                  int    i;
141                 tMPTable_Ent    *ents;
142                 Log("gMPFloatPtr = %p", gMPFloatPtr);
143                 Log("*gMPFloatPtr = {");
144                 Log("\t.Sig = 0x%08x", gMPFloatPtr->Sig);
145                 Log("\t.MPConfig = 0x%08x", gMPFloatPtr->MPConfig);
146                 Log("\t.Length = 0x%02x", gMPFloatPtr->Length);
147                 Log("\t.Version = 0x%02x", gMPFloatPtr->Version);
148                 Log("\t.Checksum = 0x%02x", gMPFloatPtr->Checksum);
149                 Log("\t.Features = [0x%02x,0x%02x,0x%02x,0x%02x,0x%02x]",
150                         gMPFloatPtr->Features[0],       gMPFloatPtr->Features[1],
151                         gMPFloatPtr->Features[2],       gMPFloatPtr->Features[3],
152                         gMPFloatPtr->Features[4]
153                         );
154                 Log("}");
155                 
156                 mptable = (void*)( KERNEL_BASE|gMPFloatPtr->MPConfig );
157                 Log("mptable = %p", mptable);
158                 Log("*mptable = {");
159                 Log("\t.Sig = 0x%08x", mptable->Sig);
160                 Log("\t.BaseTableLength = 0x%04x", mptable->BaseTableLength);
161                 Log("\t.SpecRev = 0x%02x", mptable->SpecRev);
162                 Log("\t.Checksum = 0x%02x", mptable->Checksum);
163                 Log("\t.OEMID = '%8c'", mptable->OemID);
164                 Log("\t.ProductID = '%8c'", mptable->ProductID);
165                 Log("\t.OEMTablePtr = %p'", mptable->OEMTablePtr);
166                 Log("\t.OEMTableSize = 0x%04x", mptable->OEMTableSize);
167                 Log("\t.EntryCount = 0x%04x", mptable->EntryCount);
168                 Log("\t.LocalAPICMemMap = 0x%08x", mptable->LocalAPICMemMap);
169                 Log("\t.ExtendedTableLen = 0x%04x", mptable->ExtendedTableLen);
170                 Log("\t.ExtendedTableChecksum = 0x%02x", mptable->ExtendedTableChecksum);
171                 Log("}");
172                 
173                 gpMP_LocalAPIC = (void*)MM_MapHWPage(mptable->LocalAPICMemMap, 1);
174                 
175                 ents = mptable->Entries;
176                 giNumCPUs = 0;
177                 
178                 for( i = 0; i < mptable->EntryCount; i ++ )
179                 {
180                          int    entSize = 0;
181                         switch( ents->Type )
182                         {
183                         case 0: // Processor
184                                 entSize = 20;
185                                 Log("%i: Processor", i);
186                                 Log("\t.APICID = %i", ents->Proc.APICID);
187                                 Log("\t.APICVer = 0x%02x", ents->Proc.APICVer);
188                                 Log("\t.CPUFlags = 0x%02x", ents->Proc.CPUFlags);
189                                 Log("\t.CPUSignature = 0x%08x", ents->Proc.CPUSignature);
190                                 Log("\t.FeatureFlags = 0x%08x", ents->Proc.FeatureFlags);
191                                 
192                                 
193                                 if( !(ents->Proc.CPUFlags & 1) ) {
194                                         Log("DISABLED");
195                                         break;
196                                 }
197                                 
198                                 // Check if there is too many processors
199                                 if(giNumCPUs >= MAX_CPUS) {
200                                         giNumCPUs ++;   // If `giNumCPUs` > MAX_CPUS later, it will be clipped
201                                         break;
202                                 }
203                                 
204                                 // Initialise CPU Info
205                                 gaAPIC_to_CPU[ents->Proc.APICID] = giNumCPUs;
206                                 gaCPUs[giNumCPUs].APICID = ents->Proc.APICID;
207                                 gaCPUs[giNumCPUs].State = 0;
208                                 giNumCPUs ++;
209                                 
210                                 // Send IPI
211                                 if( !(ents->Proc.CPUFlags & 2) )
212                                 {
213                                         MP_StartAP( giNumCPUs-1 );
214                                 }
215                                 
216                                 break;
217                         case 1: // Bus
218                                 entSize = 8;
219                                 Log("%i: Bus", i);
220                                 Log("\t.ID = %i", ents->Bus.ID);
221                                 Log("\t.TypeString = '%6c'", ents->Bus.TypeString);
222                                 break;
223                         case 2: // I/O APIC
224                                 entSize = 8;
225                                 Log("%i: I/O APIC", i);
226                                 Log("\t.ID = %i", ents->IOAPIC.ID);
227                                 Log("\t.Version = 0x%02x", ents->IOAPIC.Version);
228                                 Log("\t.Flags = 0x%02x", ents->IOAPIC.Flags);
229                                 Log("\t.Addr = 0x%08x", ents->IOAPIC.Addr);
230                                 break;
231                         case 3: // I/O Interrupt Assignment
232                                 entSize = 8;
233                                 Log("%i: I/O Interrupt Assignment", i);
234                                 Log("\t.IntType = %i", ents->IOInt.IntType);
235                                 Log("\t.Flags = 0x%04x", ents->IOInt.Flags);
236                                 Log("\t.SourceBusID = 0x%02x", ents->IOInt.SourceBusID);
237                                 Log("\t.SourceBusIRQ = 0x%02x", ents->IOInt.SourceBusIRQ);
238                                 Log("\t.DestAPICID = 0x%02x", ents->IOInt.DestAPICID);
239                                 Log("\t.DestAPICIRQ = 0x%02x", ents->IOInt.DestAPICIRQ);
240                                 break;
241                         case 4: // Local Interrupt Assignment
242                                 entSize = 8;
243                                 Log("%i: Local Interrupt Assignment", i);
244                                 Log("\t.IntType = %i", ents->LocalInt.IntType);
245                                 Log("\t.Flags = 0x%04x", ents->LocalInt.Flags);
246                                 Log("\t.SourceBusID = 0x%02x", ents->LocalInt.SourceBusID);
247                                 Log("\t.SourceBusIRQ = 0x%02x", ents->LocalInt.SourceBusIRQ);
248                                 Log("\t.DestLocalAPICID = 0x%02x", ents->LocalInt.DestLocalAPICID);
249                                 Log("\t.DestLocalAPICIRQ = 0x%02x", ents->LocalInt.DestLocalAPICIRQ);
250                                 break;
251                         default:
252                                 Log("%i: Unknown (%i)", i, ents->Type);
253                                 break;
254                         }
255                         ents = (void*)( (Uint)ents + entSize );
256                 }
257                 
258                 if( giNumCPUs > MAX_CPUS ) {
259                         Warning("Too many CPUs detected (%i), only using %i of them", giNumCPUs, MAX_CPUS);
260                         giNumCPUs = MAX_CPUS;
261                 }
262         
263                 while( giNumInitingCPUs )
264                         MM_FinishVirtualInit();
265                 
266                 Panic("Uh oh... MP Table Parsing is unimplemented\n");
267         }
268         else {
269                 Log("No MP Table was found, assuming uniprocessor\n");
270                 giNumCPUs = 1;
271                 gTSSs = &gTSS0;
272         }
273         #else
274         giNumCPUs = 1;
275         gTSSs = &gTSS0;
276         MM_FinishVirtualInit();
277         #endif
278         
279         // Initialise Double Fault TSS
280         /*
281         gGDT[5].LimitLow = sizeof(tTSS);
282         gGDT[5].LimitHi = 0;
283         gGDT[5].Access = 0x89;  // Type
284         gGDT[5].Flags = 0x4;
285         */
286         gGDT[5].BaseLow = (Uint)&gDoubleFault_TSS & 0xFFFF;
287         gGDT[5].BaseMid = (Uint)&gDoubleFault_TSS >> 16;
288         gGDT[5].BaseHi = (Uint)&gDoubleFault_TSS >> 24;
289         
290         Log_Debug("Proc", "gIDT[8] = {OffsetLo:%04x, CS:%04x, Flags:%04x, OffsetHi:%04x}", 
291                 gIDT[8].OffsetLo, gIDT[8].CS, gIDT[8].Flags, gIDT[8].OffsetHi);
292         gIDT[8].OffsetLo = 0;
293         gIDT[8].CS = 5<<3;
294         gIDT[8].Flags = 0x8500;
295         gIDT[8].OffsetHi = 0;
296         Log_Debug("Proc", "gIDT[8] = {OffsetLo:%04x, CS:%04x, Flags:%04x, OffsetHi:%04x}", 
297                 gIDT[8].OffsetLo, gIDT[8].CS, gIDT[8].Flags, gIDT[8].OffsetHi);
298         
299         //__asm__ __volatile__ ("xchg %bx, %bx");
300         
301         #if USE_MP
302         // Initialise Normal TSS(s)
303         for(pos=0;pos<giNumCPUs;pos++)
304         {
305         #else
306         pos = 0;
307         #endif
308                 gTSSs[pos].SS0 = 0x10;
309                 gTSSs[pos].ESP0 = 0;    // Set properly by scheduler
310                 gGDT[6+pos].BaseLow = ((Uint)(&gTSSs[pos])) & 0xFFFF;
311                 gGDT[6+pos].BaseMid = ((Uint)(&gTSSs[pos])) >> 16;
312                 gGDT[6+pos].BaseHi = ((Uint)(&gTSSs[pos])) >> 24;
313         #if USE_MP
314         }
315         for(pos=0;pos<giNumCPUs;pos++) {
316         #endif
317                 __asm__ __volatile__ ("ltr %%ax"::"a"(0x30+pos*8));
318         #if USE_MP
319         }
320         #endif
321         
322         #if USE_MP
323         gaCPUs[0].Current = &gThreadZero;
324         #else
325         gCurrentThread = &gThreadZero;
326         #endif
327         
328         #if USE_PAE
329         gThreadZero.MemState.PDP[0] = 0;
330         gThreadZero.MemState.PDP[1] = 0;
331         gThreadZero.MemState.PDP[2] = 0;
332         #else
333         gThreadZero.MemState.CR3 = (Uint)gaInitPageDir - KERNEL_BASE;
334         #endif
335         
336         // Set timer frequency
337         outb(0x43, 0x34);       // Set Channel 0, Low/High, Rate Generator
338         outb(0x40, TIMER_DIVISOR&0xFF); // Low Byte of Divisor
339         outb(0x40, (TIMER_DIVISOR>>8)&0xFF);    // High Byte
340         
341         // Create Per-Process Data Block
342         MM_Allocate(MM_PPD_CFG);
343         
344         // Change Stacks
345         Proc_ChangeStack();
346 }
347
348 #if USE_MP
349 void MP_StartAP(int CPU)
350 {
351         Log("Starting AP %i (APIC %i)", CPU, gaCPUs[CPU].APICID);
352         // Set location of AP startup code and mark for a warm restart
353         *(Uint16*)(KERNEL_BASE|0x467) = (Uint)&APStartup - (KERNEL_BASE|0xFFFF0);
354         *(Uint16*)(KERNEL_BASE|0x469) = 0xFFFF;
355         outb(0x70, 0x0F);       outb(0x71, 0x0A);       // Warm Reset
356         MP_SendIPI(gaCPUs[CPU].APICID, 0, 5);
357         giNumInitingCPUs ++;
358 }
359
360 void MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode)
361 {
362         Uint32  addr = (Uint)gpMP_LocalAPIC + 0x300;
363         Uint32  val;
364         
365         // Hi
366         val = (Uint)APICID << 24;
367         Log("*%p = 0x%08x", addr+0x10, val);
368         *(Uint32*)(addr+0x10) = val;
369         // Low (and send)
370         val = ((DeliveryMode & 7) << 8) | (Vector & 0xFF);
371         Log("*%p = 0x%08x", addr, val);
372         *(Uint32*)addr = val;
373 }
374 #endif
375
376 /**
377  * \fn void Proc_Start(void)
378  * \brief Start process scheduler
379  */
380 void Proc_Start(void)
381 {
382         // Start Interrupts (and hence scheduler)
383         __asm__ __volatile__("sti");
384 }
385
386 /**
387  * \fn tThread *Proc_GetCurThread(void)
388  * \brief Gets the current thread
389  */
390 tThread *Proc_GetCurThread(void)
391 {
392         #if USE_MP
393         //return gaCPUs[ gaAPIC_to_CPU[gpMP_LocalAPIC->ID.Val&0xFF] ].Current;
394         return gaCPUs[ GetCPUNum() ].Current;
395         #else
396         return gCurrentThread;
397         #endif
398 }
399
400 /**
401  * \fn void Proc_ChangeStack(void)
402  * \brief Swaps the current stack for a new one (in the proper stack reigon)
403  */
404 void Proc_ChangeStack(void)
405 {
406         Uint    esp, ebp;
407         Uint    tmpEbp, oldEsp;
408         Uint    curBase, newBase;
409
410         __asm__ __volatile__ ("mov %%esp, %0":"=r"(esp));
411         __asm__ __volatile__ ("mov %%ebp, %0":"=r"(ebp));
412
413         oldEsp = esp;
414
415         // Create new KStack
416         newBase = MM_NewKStack();
417         // Check for errors
418         if(newBase == 0) {
419                 Panic("What the?? Unable to allocate space for initial kernel stack");
420                 return;
421         }
422
423         curBase = (Uint)&Kernel_Stack_Top;
424         
425         LOG("curBase = 0x%x, newBase = 0x%x", curBase, newBase);
426
427         // Get ESP as a used size
428         esp = curBase - esp;
429         LOG("memcpy( %p, %p, 0x%x )", (void*)(newBase - esp), (void*)(curBase - esp), esp );
430         // Copy used stack
431         memcpy( (void*)(newBase - esp), (void*)(curBase - esp), esp );
432         // Get ESP as an offset in the new stack
433         esp = newBase - esp;
434         // Adjust EBP
435         ebp = newBase - (curBase - ebp);
436
437         // Repair EBPs & Stack Addresses
438         // Catches arguments also, but may trash stack-address-like values
439         for(tmpEbp = esp; tmpEbp < newBase; tmpEbp += 4)
440         {
441                 if(oldEsp < *(Uint*)tmpEbp && *(Uint*)tmpEbp < curBase)
442                         *(Uint*)tmpEbp += newBase - curBase;
443         }
444         
445         Proc_GetCurThread()->KernelStack = newBase;
446         
447         __asm__ __volatile__ ("mov %0, %%esp"::"r"(esp));
448         __asm__ __volatile__ ("mov %0, %%ebp"::"r"(ebp));
449 }
450
451 /**
452  * \fn int Proc_Clone(Uint *Err, Uint Flags)
453  * \brief Clone the current process
454  */
455 int Proc_Clone(Uint *Err, Uint Flags)
456 {
457         tThread *newThread;
458         tThread *cur = Proc_GetCurThread();
459         Uint    eip, esp, ebp;
460         
461         __asm__ __volatile__ ("mov %%esp, %0": "=r"(esp));
462         __asm__ __volatile__ ("mov %%ebp, %0": "=r"(ebp));
463         
464         newThread = Threads_CloneTCB(Err, Flags);
465         if(!newThread)  return -1;
466         
467         // Initialise Memory Space (New Addr space or kernel stack)
468         if(Flags & CLONE_VM) {
469                 newThread->MemState.CR3 = MM_Clone();
470                 newThread->KernelStack = cur->KernelStack;
471         } else {
472                 Uint    tmpEbp, oldEsp = esp;
473
474                 // Set CR3
475                 newThread->MemState.CR3 = cur->MemState.CR3;
476
477                 // Create new KStack
478                 newThread->KernelStack = MM_NewKStack();
479                 // Check for errors
480                 if(newThread->KernelStack == 0) {
481                         free(newThread);
482                         return -1;
483                 }
484
485                 // Get ESP as a used size
486                 esp = cur->KernelStack - esp;
487                 // Copy used stack
488                 memcpy( (void*)(newThread->KernelStack - esp), (void*)(cur->KernelStack - esp), esp );
489                 // Get ESP as an offset in the new stack
490                 esp = newThread->KernelStack - esp;
491                 // Adjust EBP
492                 ebp = newThread->KernelStack - (cur->KernelStack - ebp);
493
494                 // Repair EBPs & Stack Addresses
495                 // Catches arguments also, but may trash stack-address-like values
496                 for(tmpEbp = esp; tmpEbp < newThread->KernelStack; tmpEbp += 4)
497                 {
498                         if(oldEsp < *(Uint*)tmpEbp && *(Uint*)tmpEbp < cur->KernelStack)
499                                 *(Uint*)tmpEbp += newThread->KernelStack - cur->KernelStack;
500                 }
501         }
502         
503         // Save core machine state
504         newThread->SavedState.ESP = esp;
505         newThread->SavedState.EBP = ebp;
506         eip = GetEIP();
507         if(eip == SWITCH_MAGIC) {
508                 outb(0x20, 0x20);       // ACK Timer and return as child
509                 return 0;
510         }
511         
512         // Set EIP as parent
513         newThread->SavedState.EIP = eip;
514         
515         // Lock list and add to active
516         Threads_AddActive(newThread);
517         
518         return newThread->TID;
519 }
520
521 /**
522  * \fn int Proc_SpawnWorker(void)
523  * \brief Spawns a new worker thread
524  */
525 int Proc_SpawnWorker(void)
526 {
527         tThread *new, *cur;
528         Uint    eip, esp, ebp;
529         
530         cur = Proc_GetCurThread();
531         
532         // Create new thread
533         new = malloc( sizeof(tThread) );
534         if(!new) {
535                 Warning("Proc_SpawnWorker - Out of heap space!\n");
536                 return -1;
537         }
538         memcpy(new, &gThreadZero, sizeof(tThread));
539         // Set Thread ID
540         new->TID = giNextTID++;
541         // Create a new worker stack (in PID0's address space)
542         // The stack is relocated by this code
543         new->KernelStack = MM_NewWorkerStack();
544
545         // Get ESP and EBP based in the new stack
546         __asm__ __volatile__ ("mov %%esp, %0": "=r"(esp));
547         __asm__ __volatile__ ("mov %%ebp, %0": "=r"(ebp));
548         esp = new->KernelStack - (cur->KernelStack - esp);
549         ebp = new->KernelStack - (cur->KernelStack - ebp);      
550         
551         // Save core machine state
552         new->SavedState.ESP = esp;
553         new->SavedState.EBP = ebp;
554         eip = GetEIP();
555         if(eip == SWITCH_MAGIC) {
556                 outb(0x20, 0x20);       // ACK Timer and return as child
557                 return 0;
558         }
559         
560         // Set EIP as parent
561         new->SavedState.EIP = eip;
562         // Mark as active
563         new->Status = THREAD_STAT_ACTIVE;
564         Threads_AddActive( new );
565         
566         return new->TID;
567 }
568
569 /**
570  * \fn Uint Proc_MakeUserStack(void)
571  * \brief Creates a new user stack
572  */
573 Uint Proc_MakeUserStack(void)
574 {
575          int    i;
576         Uint    base = USER_STACK_TOP - USER_STACK_SZ;
577         
578         // Check Prospective Space
579         for( i = USER_STACK_SZ >> 12; i--; )
580                 if( MM_GetPhysAddr( base + (i<<12) ) != 0 )
581                         break;
582         
583         if(i != -1)     return 0;
584         
585         // Allocate Stack - Allocate incrementally to clean up MM_Dump output
586         for( i = 0; i < USER_STACK_SZ/4069; i++ )
587                 MM_Allocate( base + (i<<12) );
588         
589         return base + USER_STACK_SZ;
590 }
591
592 /**
593  * \fn void Proc_StartUser(Uint Entrypoint, Uint *Bases, int ArgC, char **ArgV, char **EnvP, int DataSize)
594  * \brief Starts a user task
595  */
596 void Proc_StartUser(Uint Entrypoint, Uint *Bases, int ArgC, char **ArgV, char **EnvP, int DataSize)
597 {
598         Uint    *stack = (void*)Proc_MakeUserStack();
599          int    i;
600         Uint    delta;
601         Uint16  ss, cs;
602         
603         //Log("stack = %p", stack);
604         
605         // Copy Arguments
606         stack -= DataSize/sizeof(*stack);
607         memcpy( stack, ArgV, DataSize );
608         
609         //Log("stack = %p", stack);
610         
611         if( DataSize )
612         {
613                 // Adjust Arguments and environment
614                 delta = (Uint)stack - (Uint)ArgV;
615                 ArgV = (char**)stack;
616                 for( i = 0; ArgV[i]; i++ )
617                         ArgV[i] += delta;
618                 i ++;
619                 
620                 // Do we care about EnvP?
621                 if( EnvP ) {
622                         EnvP = &ArgV[i];
623                         for( i = 0; EnvP[i]; i++ )
624                                 EnvP[i] += delta;
625                 }
626         }
627         
628         // User Mode Segments
629         ss = 0x23;      cs = 0x1B;
630         
631         // Arguments
632         *--stack = (Uint)EnvP;
633         *--stack = (Uint)ArgV;
634         *--stack = (Uint)ArgC;
635         while(*Bases)
636                 *--stack = *Bases++;
637         *--stack = 0;   // Return Address
638         
639         Proc_StartProcess(ss, (Uint)stack, 0x202, cs, Entrypoint);
640 }
641
642 void Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP)
643 {
644         Uint    *stack = (void*)Stack;
645         *--stack = SS;          //Stack Segment
646         *--stack = Stack;       //Stack Pointer
647         *--stack = Flags;       //EFLAGS (Resvd (0x2) and IF (0x20))
648         *--stack = CS;          //Code Segment
649         *--stack = IP;  //EIP
650         //PUSHAD
651         *--stack = 0xAAAAAAAA;  // eax
652         *--stack = 0xCCCCCCCC;  // ecx
653         *--stack = 0xDDDDDDDD;  // edx
654         *--stack = 0xBBBBBBBB;  // ebx
655         *--stack = 0xD1D1D1D1;  // edi
656         *--stack = 0x54545454;  // esp - NOT POPED
657         *--stack = 0x51515151;  // esi
658         *--stack = 0xB4B4B4B4;  // ebp
659         //Individual PUSHs
660         *--stack = SS;  // ds
661         *--stack = SS;  // es
662         *--stack = SS;  // fs
663         *--stack = SS;  // gs
664         
665         __asm__ __volatile__ (
666         "mov %%eax,%%esp;\n\t"  // Set stack pointer
667         "pop %%gs;\n\t"
668         "pop %%fs;\n\t"
669         "pop %%es;\n\t"
670         "pop %%ds;\n\t"
671         "popa;\n\t"
672         "iret;\n\t" : : "a" (stack));
673         for(;;);
674 }
675
676 /**
677  * \fn int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
678  * \brief Demotes a process to a lower permission level
679  * \param Err   Pointer to user's errno
680  * \param Dest  New Permission Level
681  * \param Regs  Pointer to user's register structure
682  */
683 int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
684 {
685          int    cpl = Regs->cs & 3;
686         // Sanity Check
687         if(Dest > 3 || Dest < 0) {
688                 *Err = -EINVAL;
689                 return -1;
690         }
691         
692         // Permission Check
693         if(cpl > Dest) {
694                 *Err = -EACCES;
695                 return -1;
696         }
697         
698         // Change the Segment Registers
699         Regs->cs = (((Dest+1)<<4) | Dest) - 8;
700         Regs->ss = ((Dest+1)<<4) | Dest;
701         // Check if the GP Segs are GDT, then change them
702         if(!(Regs->ds & 4))     Regs->ds = ((Dest+1)<<4) | Dest;
703         if(!(Regs->es & 4))     Regs->es = ((Dest+1)<<4) | Dest;
704         if(!(Regs->fs & 4))     Regs->fs = ((Dest+1)<<4) | Dest;
705         if(!(Regs->gs & 4))     Regs->gs = ((Dest+1)<<4) | Dest;
706         
707         return 0;
708 }
709
710 /**
711  * \brief Calls a signal handler in user mode
712  * \note Used for signals
713  */
714 void Proc_CallFaultHandler(tThread *Thread)
715 {
716         // Rewinds the stack and calls the user function
717         // Never returns
718         __asm__ __volatile__ ("mov %0, %%ebp;\n\tcall Proc_ReturnToUser" :: "r"(Thread->FaultHandler));
719         for(;;);
720 }
721
722 /**
723  * \fn void Proc_Scheduler(int CPU)
724  * \brief Swap current thread and clears dead threads
725  */
726 void Proc_Scheduler(int CPU)
727 {
728         Uint    esp, ebp, eip;
729         tThread *thread;
730         
731         // If the spinlock is set, let it complete
732         if(IS_LOCKED(&glThreadListLock))        return;
733         
734         // Clear Delete Queue
735         while(gDeleteThreads)
736         {
737                 thread = gDeleteThreads->Next;
738                 if(gDeleteThreads->IsLocked) {  // Only free if structure is unused
739                         gDeleteThreads->Status = THREAD_STAT_NULL;
740                         free( gDeleteThreads );
741                 }
742                 gDeleteThreads = thread;
743         }
744         
745         // Check if there is any tasks running
746         if(giNumActiveThreads == 0) {
747                 Log("No Active threads, sleeping");
748                 __asm__ __volatile__ ("hlt");
749                 return;
750         }
751         
752         // Get current thread
753         #if USE_MP
754         thread = gaCPUs[CPU].Current;
755         #else
756         thread = gCurrentThread;
757         #endif
758         
759         // Reduce remaining quantum and continue timeslice if non-zero
760         if(thread->Remaining--) return;
761         // Reset quantum for next call
762         thread->Remaining = thread->Quantum;
763         
764         // Get machine state
765         __asm__ __volatile__ ("mov %%esp, %0":"=r"(esp));
766         __asm__ __volatile__ ("mov %%ebp, %0":"=r"(ebp));
767         eip = GetEIP();
768         if(eip == SWITCH_MAGIC) return; // Check if a switch happened
769         
770         // Save machine state
771         thread->SavedState.ESP = esp;
772         thread->SavedState.EBP = ebp;
773         thread->SavedState.EIP = eip;
774         
775         // Get next thread
776         thread = Threads_GetNextToRun(CPU);
777         
778         // Error Check
779         if(thread == NULL) {
780                 Warning("Hmm... Threads_GetNextToRun returned NULL, I don't think this should happen.\n");
781                 return;
782         }
783         
784         #if DEBUG_TRACE_SWITCH
785         Log("Switching to task %i, CR3 = 0x%x, EIP = %p",
786                 thread->TID,
787                 thread->MemState.CR3,
788                 thread->SavedState.EIP
789                 );
790         #endif
791         
792         // Set current thread
793         #if USE_MP
794         gaCPUs[CPU].Current = thread;
795         #else
796         gCurrentThread = thread;
797         #endif
798         
799         // Update Kernel Stack pointer
800         gTSSs[CPU].ESP0 = thread->KernelStack-4;
801         
802         // Set address space
803         #if USE_PAE
804         # error "Todo: Implement PAE Address space switching"
805         #else
806                 __asm__ __volatile__ ("mov %0, %%cr3"::"a"(thread->MemState.CR3));
807         #endif
808         
809         #if 0
810         if(thread->SavedState.ESP > 0xC0000000
811         && thread->SavedState.ESP < thread->KernelStack-0x2000) {
812                 Log_Warning("Proc", "Possible bad ESP %p (PID %i)", thread->SavedState.ESP);
813         }
814         #endif
815         
816         // Switch threads
817         __asm__ __volatile__ (
818                 "mov %1, %%esp\n\t"     // Restore ESP
819                 "mov %2, %%ebp\n\t"     // and EBP
820                 "jmp *%3" : :   // And return to where we saved state (Proc_Clone or Proc_Scheduler)
821                 "a"(SWITCH_MAGIC), "b"(thread->SavedState.ESP),
822                 "d"(thread->SavedState.EBP), "c"(thread->SavedState.EIP)
823                 );
824         for(;;);        // Shouldn't reach here
825 }
826
827 // === EXPORTS ===
828 EXPORT(Proc_SpawnWorker);

UCC git Repository :: git.ucc.asn.au