SMP Work (APs now start, just seem to lock up on lgdt, or whatever is at that address)
[tpg/acess2.git] / Kernel / arch / x86 / proc.c
1 /*
2  * AcessOS Microkernel Version
3  * proc.c
4  */
5 #include <acess.h>
6 #include <proc.h>
7 #include <mm_virt.h>
8 #include <errno.h>
9 #if USE_MP
10 # include <mp.h>
11 #endif
12
13 // === FLAGS ===
14 #define DEBUG_TRACE_SWITCH      0
15
16 // === CONSTANTS ===
17 #define SWITCH_MAGIC    0xFFFACE55      // There is no code in this area
18 #define TIMER_DIVISOR   11931   //~100Hz
19
20 // === IMPORTS ===
21 extern tGDT     gGDT[];
22 extern void APStartup();        // 16-bit AP startup code
23 extern Uint     GetEIP();       // start.asm
24 extern Uint32   gaInitPageDir[1024];    // start.asm
25 extern void     Kernel_Stack_Top;
26 extern volatile int     giThreadListLock;
27 extern int      giNumCPUs;
28 extern int      giNextTID;
29 extern int      giTotalTickets;
30 extern int      giNumActiveThreads;
31 extern tThread  gThreadZero;
32 extern tThread  *gActiveThreads;
33 extern tThread  *gSleepingThreads;
34 extern tThread  *gDeleteThreads;
35 extern tThread  *Threads_GetNextToRun(int CPU);
36 extern void     Threads_Dump();
37 extern tThread  *Threads_CloneTCB(Uint *Err, Uint Flags);
38 extern void     Isr7();
39
40 // === PROTOTYPES ===
41 void    ArchThreads_Init();
42 #if USE_MP
43 void    MP_StartAP(int CPU);
44 void    MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode);
45 #endif
46 void    Proc_Start();
47 tThread *Proc_GetCurThread();
48 void    Proc_ChangeStack();
49  int    Proc_Clone(Uint *Err, Uint Flags);
50 void    Proc_Scheduler();
51
52 // === GLOBALS ===
53 // --- Multiprocessing ---
54 #if USE_MP
55 tMPInfo *gMPFloatPtr = NULL;
56 tAPIC   *gpMP_LocalAPIC = NULL;
57 Uint8   gaAPIC_to_CPU[256] = {0};
58 tCPU    gaCPUs[MAX_CPUS];
59 #else
60 tThread *gCurrentThread = NULL;
61 #endif
62 #if USE_PAE
63 Uint32  *gPML4s[4] = NULL;
64 #endif
65 tTSS    *gTSSs = NULL;
66 tTSS    gTSS0 = {0};
67 // --- Error Recovery ---
68 char    gaDoubleFaultStack[1024];
69 tTSS    gDoubleFault_TSS = {
70         .ESP0 = (Uint)&gaDoubleFaultStack[1023],
71         .SS0 = 0x10,
72         .EIP = (Uint)Isr7
73 };
74
75 // === CODE ===
76 /**
77  * \fn void ArchThreads_Init()
78  * \brief Starts the process scheduler
79  */
80 void ArchThreads_Init()
81 {
82         Uint    pos = 0;
83         
84         #if USE_MP
85         tMPTable        *mptable;
86         
87         // Mark BSP as active
88         gaCPUs[0].State = 2;
89         
90         // -- Initialise Multiprocessing
91         // Find MP Floating Table
92         // - EBDA/Last 1Kib (640KiB)
93         for(pos = KERNEL_BASE|0x9F000; pos < (KERNEL_BASE|0xA0000); pos += 16) {
94                 if( *(Uint*)(pos) == MPPTR_IDENT ) {
95                         Log("Possible %p", pos);
96                         if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
97                         gMPFloatPtr = (void*)pos;
98                         break;
99                 }
100         }
101         // - Last KiB (512KiB base mem)
102         if(!gMPFloatPtr) {
103                 for(pos = KERNEL_BASE|0x7F000; pos < (KERNEL_BASE|0x80000); pos += 16) {
104                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
105                                 Log("Possible %p", pos);
106                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
107                                 gMPFloatPtr = (void*)pos;
108                                 break;
109                         }
110                 }
111         }
112         // - BIOS ROM
113         if(!gMPFloatPtr) {
114                 for(pos = KERNEL_BASE|0xE0000; pos < (KERNEL_BASE|0x100000); pos += 16) {
115                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
116                                 Log("Possible %p", pos);
117                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
118                                 gMPFloatPtr = (void*)pos;
119                                 break;
120                         }
121                 }
122         }
123         
124         // If the MP Table Exists, parse it
125         if(gMPFloatPtr)
126         {
127                  int    i;
128                 tMPTable_Ent    *ents;
129                 Log("gMPFloatPtr = %p", gMPFloatPtr);
130                 Log("*gMPFloatPtr = {");
131                 Log("\t.Sig = 0x%08x", gMPFloatPtr->Sig);
132                 Log("\t.MPConfig = 0x%08x", gMPFloatPtr->MPConfig);
133                 Log("\t.Length = 0x%02x", gMPFloatPtr->Length);
134                 Log("\t.Version = 0x%02x", gMPFloatPtr->Version);
135                 Log("\t.Checksum = 0x%02x", gMPFloatPtr->Checksum);
136                 Log("\t.Features = [0x%02x,0x%02x,0x%02x,0x%02x,0x%02x]",
137                         gMPFloatPtr->Features[0],       gMPFloatPtr->Features[1],
138                         gMPFloatPtr->Features[2],       gMPFloatPtr->Features[3],
139                         gMPFloatPtr->Features[4]
140                         );
141                 Log("}");
142                 
143                 mptable = (void*)( KERNEL_BASE|gMPFloatPtr->MPConfig );
144                 Log("mptable = %p", mptable);
145                 Log("*mptable = {");
146                 Log("\t.Sig = 0x%08x", mptable->Sig);
147                 Log("\t.BaseTableLength = 0x%04x", mptable->BaseTableLength);
148                 Log("\t.SpecRev = 0x%02x", mptable->SpecRev);
149                 Log("\t.Checksum = 0x%02x", mptable->Checksum);
150                 Log("\t.OEMID = '%8c'", mptable->OemID);
151                 Log("\t.ProductID = '%8c'", mptable->ProductID);
152                 Log("\t.OEMTablePtr = %p'", mptable->OEMTablePtr);
153                 Log("\t.OEMTableSize = 0x%04x", mptable->OEMTableSize);
154                 Log("\t.EntryCount = 0x%04x", mptable->EntryCount);
155                 Log("\t.LocalAPICMemMap = 0x%08x", mptable->LocalAPICMemMap);
156                 Log("\t.ExtendedTableLen = 0x%04x", mptable->ExtendedTableLen);
157                 Log("\t.ExtendedTableChecksum = 0x%02x", mptable->ExtendedTableChecksum);
158                 Log("}");
159                 
160                 gpMP_LocalAPIC = (void*)MM_MapHWPage(mptable->LocalAPICMemMap, 1);
161                 
162                 ents = mptable->Entries;
163                 giNumCPUs = 0;
164                 
165                 for( i = 0; i < mptable->EntryCount; i ++ )
166                 {
167                          int    entSize = 0;
168                         switch( ents->Type )
169                         {
170                         case 0: // Processor
171                                 entSize = 20;
172                                 Log("%i: Processor", i);
173                                 Log("\t.APICID = %i", ents->Proc.APICID);
174                                 Log("\t.APICVer = 0x%02x", ents->Proc.APICVer);
175                                 Log("\t.CPUFlags = 0x%02x", ents->Proc.CPUFlags);
176                                 Log("\t.CPUSignature = 0x%08x", ents->Proc.CPUSignature);
177                                 Log("\t.FeatureFlags = 0x%08x", ents->Proc.FeatureFlags);
178                                 
179                                 
180                                 if( !(ents->Proc.CPUFlags & 1) ) {
181                                         Log("DISABLED");
182                                         break;
183                                 }
184                                 
185                                 // Check if there is too many processors
186                                 if(giNumCPUs >= MAX_CPUS) {
187                                         giNumCPUs ++;   // If `giNumCPUs` > MAX_CPUS later, it will be clipped
188                                         break;
189                                 }
190                                 
191                                 // Initialise CPU Info
192                                 gaAPIC_to_CPU[ents->Proc.APICID] = giNumCPUs;
193                                 gaCPUs[giNumCPUs].APICID = ents->Proc.APICID;
194                                 gaCPUs[giNumCPUs].State = 0;
195                                 giNumCPUs ++;
196                                 
197                                 // Send IPI
198                                 if( !(ents->Proc.CPUFlags & 2) )
199                                 {
200                                         MP_StartAP( giNumCPUs-1 );
201                                 }
202                                 
203                                 break;
204                         case 1: // Bus
205                                 entSize = 8;
206                                 Log("%i: Bus", i);
207                                 Log("\t.ID = %i", ents->Bus.ID);
208                                 Log("\t.TypeString = '%6c'", ents->Bus.TypeString);
209                                 break;
210                         case 2: // I/O APIC
211                                 entSize = 8;
212                                 Log("%i: I/O APIC", i);
213                                 Log("\t.ID = %i", ents->IOAPIC.ID);
214                                 Log("\t.Version = 0x%02x", ents->IOAPIC.Version);
215                                 Log("\t.Flags = 0x%02x", ents->IOAPIC.Flags);
216                                 Log("\t.Addr = 0x%08x", ents->IOAPIC.Addr);
217                                 break;
218                         case 3: // I/O Interrupt Assignment
219                                 entSize = 8;
220                                 Log("%i: I/O Interrupt Assignment", i);
221                                 Log("\t.IntType = %i", ents->IOInt.IntType);
222                                 Log("\t.Flags = 0x%04x", ents->IOInt.Flags);
223                                 Log("\t.SourceBusID = 0x%02x", ents->IOInt.SourceBusID);
224                                 Log("\t.SourceBusIRQ = 0x%02x", ents->IOInt.SourceBusIRQ);
225                                 Log("\t.DestAPICID = 0x%02x", ents->IOInt.DestAPICID);
226                                 Log("\t.DestAPICIRQ = 0x%02x", ents->IOInt.DestAPICIRQ);
227                                 break;
228                         case 4: // Local Interrupt Assignment
229                                 entSize = 8;
230                                 Log("%i: Local Interrupt Assignment", i);
231                                 Log("\t.IntType = %i", ents->LocalInt.IntType);
232                                 Log("\t.Flags = 0x%04x", ents->LocalInt.Flags);
233                                 Log("\t.SourceBusID = 0x%02x", ents->LocalInt.SourceBusID);
234                                 Log("\t.SourceBusIRQ = 0x%02x", ents->LocalInt.SourceBusIRQ);
235                                 Log("\t.DestLocalAPICID = 0x%02x", ents->LocalInt.DestLocalAPICID);
236                                 Log("\t.DestLocalAPICIRQ = 0x%02x", ents->LocalInt.DestLocalAPICIRQ);
237                                 break;
238                         default:
239                                 Log("%i: Unknown (%i)", i, ents->Type);
240                                 break;
241                         }
242                         ents = (void*)( (Uint)ents + entSize );
243                 }
244                 
245                 if( giNumCPUs > MAX_CPUS ) {
246                         Warning("Too many CPUs detected (%i), only using %i of them", giNumCPUs, MAX_CPUS);
247                 }
248                 
249                 Panic("Uh oh... MP Table Parsing is unimplemented\n");
250         }
251         else {
252                 Log("No MP Table was found, assuming uniprocessor\n");
253                 giNumCPUs = 1;
254                 gTSSs = &gTSS0;
255         }
256         #else
257         giNumCPUs = 1;
258         gTSSs = &gTSS0;
259         #endif
260         
261         // Initialise Double Fault TSS
262         /*
263         gGDT[5].LimitLow = sizeof(tTSS);
264         gGDT[5].LimitHi = 0;
265         gGDT[5].Access = 0x89;  // Type
266         gGDT[5].Flags = 0x4;
267         */
268         gGDT[5].BaseLow = (Uint)&gDoubleFault_TSS & 0xFFFF;
269         gGDT[5].BaseMid = (Uint)&gDoubleFault_TSS >> 16;
270         gGDT[5].BaseHi = (Uint)&gDoubleFault_TSS >> 24;
271         
272         #if USE_MP
273         // Initialise Normal TSS(s)
274         for(pos=0;pos<giNumCPUs;pos++)
275         {
276         #else
277         pos = 0;
278         #endif
279                 gTSSs[pos].SS0 = 0x10;
280                 gTSSs[pos].ESP0 = 0;    // Set properly by scheduler
281                 gGDT[6+pos].BaseLow = ((Uint)(&gTSSs[pos])) & 0xFFFF;
282                 gGDT[6+pos].BaseMid = ((Uint)(&gTSSs[pos])) >> 16;
283                 gGDT[6+pos].BaseHi = ((Uint)(&gTSSs[pos])) >> 24;
284         #if USE_MP
285         }
286         for(pos=0;pos<giNumCPUs;pos++) {
287         #endif
288                 __asm__ __volatile__ ("ltr %%ax"::"a"(0x30+pos*8));
289         #if USE_MP
290         }
291         #endif
292         
293         #if USE_MP
294         gaCPUs[0].Current = &gThreadZero;
295         #else
296         gCurrentThread = &gThreadZero;
297         #endif
298         
299         #if USE_PAE
300         gThreadZero.MemState.PDP[0] = 0;
301         gThreadZero.MemState.PDP[1] = 0;
302         gThreadZero.MemState.PDP[2] = 0;
303         #else
304         gThreadZero.MemState.CR3 = (Uint)gaInitPageDir - KERNEL_BASE;
305         #endif
306         
307         // Set timer frequency
308         outb(0x43, 0x34);       // Set Channel 0, Low/High, Rate Generator
309         outb(0x40, TIMER_DIVISOR&0xFF); // Low Byte of Divisor
310         outb(0x40, (TIMER_DIVISOR>>8)&0xFF);    // High Byte
311         
312         // Create Per-Process Data Block
313         MM_Allocate(MM_PPD_CFG);
314         
315         // Change Stacks
316         Proc_ChangeStack();
317 }
318
319 #if USE_MP
320 void MP_StartAP(int CPU)
321 {
322         Log("Starting AP %i (APIC %i)", CPU, gaCPUs[CPU].APICID);
323         // Set location of AP startup code and mark for a warm restart
324         *(Uint16*)(KERNEL_BASE|0x467) = (Uint)&APStartup - (KERNEL_BASE|0xFFFF0);
325         *(Uint16*)(KERNEL_BASE|0x469) = 0xFFFF;
326         outb(0x70, 0x0F);       outb(0x71, 0x0A);       // Warm Reset
327         MP_SendIPI(gaCPUs[CPU].APICID, 0, 5);
328 }
329
330 void MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode)
331 {
332         Uint32  addr = (Uint)gpMP_LocalAPIC + 0x300;
333         Uint32  val;
334         
335         // Hi
336         val = (Uint)APICID << 24;
337         Log("*%p = 0x%08x", addr+0x10, val);
338         *(Uint32*)(addr+0x10) = val;
339         // Low (and send)
340         val = ((DeliveryMode & 7) << 8) | (Vector & 0xFF);
341         Log("*%p = 0x%08x", addr, val);
342         *(Uint32*)addr = val;
343 }
344 #endif
345
346 /**
347  * \fn void Proc_Start()
348  * \brief Start process scheduler
349  */
350 void Proc_Start()
351 {
352         // Start Interrupts (and hence scheduler)
353         __asm__ __volatile__("sti");
354 }
355
356 /**
357  * \fn tThread *Proc_GetCurThread()
358  * \brief Gets the current thread
359  */
360 tThread *Proc_GetCurThread()
361 {
362         #if USE_MP
363         return gaCPUs[ gaAPIC_to_CPU[gpMP_LocalAPIC->ID.Val&0xFF] ].Current;
364         #else
365         return gCurrentThread;
366         #endif
367 }
368
369 /**
370  * \fn void Proc_ChangeStack()
371  * \brief Swaps the current stack for a new one (in the proper stack reigon)
372  */
373 void Proc_ChangeStack()
374 {
375         Uint    esp, ebp;
376         Uint    tmpEbp, oldEsp;
377         Uint    curBase, newBase;
378
379         __asm__ __volatile__ ("mov %%esp, %0":"=r"(esp));
380         __asm__ __volatile__ ("mov %%ebp, %0":"=r"(ebp));
381
382         oldEsp = esp;
383
384         // Create new KStack
385         newBase = MM_NewKStack();
386         // Check for errors
387         if(newBase == 0) {
388                 Panic("What the?? Unable to allocate space for initial kernel stack");
389                 return;
390         }
391
392         curBase = (Uint)&Kernel_Stack_Top;
393         
394         LOG("curBase = 0x%x, newBase = 0x%x", curBase, newBase);
395
396         // Get ESP as a used size
397         esp = curBase - esp;
398         LOG("memcpy( %p, %p, 0x%x )", (void*)(newBase - esp), (void*)(curBase - esp), esp );
399         // Copy used stack
400         memcpy( (void*)(newBase - esp), (void*)(curBase - esp), esp );
401         // Get ESP as an offset in the new stack
402         esp = newBase - esp;
403         // Adjust EBP
404         ebp = newBase - (curBase - ebp);
405
406         // Repair EBPs & Stack Addresses
407         // Catches arguments also, but may trash stack-address-like values
408         for(tmpEbp = esp; tmpEbp < newBase; tmpEbp += 4)
409         {
410                 if(oldEsp < *(Uint*)tmpEbp && *(Uint*)tmpEbp < curBase)
411                         *(Uint*)tmpEbp += newBase - curBase;
412         }
413         
414         Proc_GetCurThread()->KernelStack = newBase;
415         
416         __asm__ __volatile__ ("mov %0, %%esp"::"r"(esp));
417         __asm__ __volatile__ ("mov %0, %%ebp"::"r"(ebp));
418 }
419
420 /**
421  * \fn int Proc_Clone(Uint *Err, Uint Flags)
422  * \brief Clone the current process
423  */
424 int Proc_Clone(Uint *Err, Uint Flags)
425 {
426         tThread *newThread;
427         tThread *cur = Proc_GetCurThread();
428         Uint    eip, esp, ebp;
429         
430         __asm__ __volatile__ ("mov %%esp, %0": "=r"(esp));
431         __asm__ __volatile__ ("mov %%ebp, %0": "=r"(ebp));
432         
433         newThread = Threads_CloneTCB(Err, Flags);
434         if(!newThread)  return -1;
435         
436         // Initialise Memory Space (New Addr space or kernel stack)
437         if(Flags & CLONE_VM) {
438                 newThread->MemState.CR3 = MM_Clone();
439                 newThread->KernelStack = cur->KernelStack;
440         } else {
441                 Uint    tmpEbp, oldEsp = esp;
442
443                 // Set CR3
444                 newThread->MemState.CR3 = cur->MemState.CR3;
445
446                 // Create new KStack
447                 newThread->KernelStack = MM_NewKStack();
448                 // Check for errors
449                 if(newThread->KernelStack == 0) {
450                         free(newThread);
451                         return -1;
452                 }
453
454                 // Get ESP as a used size
455                 esp = cur->KernelStack - esp;
456                 // Copy used stack
457                 memcpy( (void*)(newThread->KernelStack - esp), (void*)(cur->KernelStack - esp), esp );
458                 // Get ESP as an offset in the new stack
459                 esp = newThread->KernelStack - esp;
460                 // Adjust EBP
461                 ebp = newThread->KernelStack - (cur->KernelStack - ebp);
462
463                 // Repair EBPs & Stack Addresses
464                 // Catches arguments also, but may trash stack-address-like values
465                 for(tmpEbp = esp; tmpEbp < newThread->KernelStack; tmpEbp += 4)
466                 {
467                         if(oldEsp < *(Uint*)tmpEbp && *(Uint*)tmpEbp < cur->KernelStack)
468                                 *(Uint*)tmpEbp += newThread->KernelStack - cur->KernelStack;
469                 }
470         }
471         
472         // Save core machine state
473         newThread->SavedState.ESP = esp;
474         newThread->SavedState.EBP = ebp;
475         eip = GetEIP();
476         if(eip == SWITCH_MAGIC) {
477                 outb(0x20, 0x20);       // ACK Timer and return as child
478                 return 0;
479         }
480         
481         // Set EIP as parent
482         newThread->SavedState.EIP = eip;
483         
484         // Lock list and add to active
485         Threads_AddActive(newThread);
486         
487         return newThread->TID;
488 }
489
490 /**
491  * \fn int Proc_SpawnWorker()
492  * \brief Spawns a new worker thread
493  */
494 int Proc_SpawnWorker()
495 {
496         tThread *new, *cur;
497         Uint    eip, esp, ebp;
498         
499         cur = Proc_GetCurThread();
500         
501         // Create new thread
502         new = malloc( sizeof(tThread) );
503         if(!new) {
504                 Warning("Proc_SpawnWorker - Out of heap space!\n");
505                 return -1;
506         }
507         memcpy(new, &gThreadZero, sizeof(tThread));
508         // Set Thread ID
509         new->TID = giNextTID++;
510         // Create a new worker stack (in PID0's address space)
511         // The stack is relocated by this code
512         new->KernelStack = MM_NewWorkerStack();
513
514         // Get ESP and EBP based in the new stack
515         __asm__ __volatile__ ("mov %%esp, %0": "=r"(esp));
516         __asm__ __volatile__ ("mov %%ebp, %0": "=r"(ebp));
517         esp = new->KernelStack - (cur->KernelStack - esp);
518         ebp = new->KernelStack - (cur->KernelStack - ebp);      
519         
520         // Save core machine state
521         new->SavedState.ESP = esp;
522         new->SavedState.EBP = ebp;
523         eip = GetEIP();
524         if(eip == SWITCH_MAGIC) {
525                 outb(0x20, 0x20);       // ACK Timer and return as child
526                 return 0;
527         }
528         
529         // Set EIP as parent
530         new->SavedState.EIP = eip;
531         // Mark as active
532         new->Status = THREAD_STAT_ACTIVE;
533         Threads_AddActive( new );
534         
535         return new->TID;
536 }
537
538 /**
539  * \fn Uint Proc_MakeUserStack()
540  * \brief Creates a new user stack
541  */
542 Uint Proc_MakeUserStack()
543 {
544          int    i;
545         Uint    base = USER_STACK_TOP - USER_STACK_SZ;
546         
547         // Check Prospective Space
548         for( i = USER_STACK_SZ >> 12; i--; )
549                 if( MM_GetPhysAddr( base + (i<<12) ) != 0 )
550                         break;
551         
552         if(i != -1)     return 0;
553         
554         // Allocate Stack - Allocate incrementally to clean up MM_Dump output
555         for( i = 0; i < USER_STACK_SZ/4069; i++ )
556                 MM_Allocate( base + (i<<12) );
557         
558         return base + USER_STACK_SZ;
559 }
560
561
562 /**
563  * \fn void Proc_StartUser(Uint Entrypoint, Uint *Bases, int ArgC, char **ArgV, char **EnvP, int DataSize)
564  * \brief Starts a user task
565  */
566 void Proc_StartUser(Uint Entrypoint, Uint *Bases, int ArgC, char **ArgV, char **EnvP, int DataSize)
567 {
568         Uint    *stack = (void*)Proc_MakeUserStack();
569          int    i;
570         Uint    delta;
571         Uint16  ss, cs;
572         
573         LOG("stack = 0x%x", stack);
574         
575         // Copy Arguments
576         stack = (void*)( (Uint)stack - DataSize );
577         memcpy( stack, ArgV, DataSize );
578         
579         // Adjust Arguments and environment
580         delta = (Uint)stack - (Uint)ArgV;
581         ArgV = (char**)stack;
582         for( i = 0; ArgV[i]; i++ )      ArgV[i] += delta;
583         i ++;
584         EnvP = &ArgV[i];
585         for( i = 0; EnvP[i]; i++ )      EnvP[i] += delta;
586         
587         // User Mode Segments
588         ss = 0x23;      cs = 0x1B;
589         
590         // Arguments
591         *--stack = (Uint)EnvP;
592         *--stack = (Uint)ArgV;
593         *--stack = (Uint)ArgC;
594         while(*Bases)
595                 *--stack = *Bases++;
596         *--stack = 0;   // Return Address
597         delta = (Uint)stack;    // Reuse delta to save SP
598         
599         *--stack = ss;          //Stack Segment
600         *--stack = delta;       //Stack Pointer
601         *--stack = 0x0202;      //EFLAGS (Resvd (0x2) and IF (0x20))
602         *--stack = cs;          //Code Segment
603         *--stack = Entrypoint;  //EIP
604         //PUSHAD
605         *--stack = 0xAAAAAAAA;  // eax
606         *--stack = 0xCCCCCCCC;  // ecx
607         *--stack = 0xDDDDDDDD;  // edx
608         *--stack = 0xBBBBBBBB;  // ebx
609         *--stack = 0xD1D1D1D1;  // edi
610         *--stack = 0x54545454;  // esp - NOT POPED
611         *--stack = 0x51515151;  // esi
612         *--stack = 0xB4B4B4B4;  // ebp
613         //Individual PUSHs
614         *--stack = ss;  // ds
615         *--stack = ss;  // es
616         *--stack = ss;  // fs
617         *--stack = ss;  // gs
618         
619         __asm__ __volatile__ (
620         "mov %%eax,%%esp;\n\t"  // Set stack pointer
621         "pop %%gs;\n\t"
622         "pop %%fs;\n\t"
623         "pop %%es;\n\t"
624         "pop %%ds;\n\t"
625         "popa;\n\t"
626         "iret;\n\t" : : "a" (stack));
627         for(;;);
628 }
629
630 /**
631  * \fn int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
632  * \brief Demotes a process to a lower permission level
633  * \param Err   Pointer to user's errno
634  * \param Dest  New Permission Level
635  * \param Regs  Pointer to user's register structure
636  */
637 int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
638 {
639          int    cpl = Regs->cs & 3;
640         // Sanity Check
641         if(Dest > 3 || Dest < 0) {
642                 *Err = -EINVAL;
643                 return -1;
644         }
645         
646         // Permission Check
647         if(cpl > Dest) {
648                 *Err = -EACCES;
649                 return -1;
650         }
651         
652         // Change the Segment Registers
653         Regs->cs = (((Dest+1)<<4) | Dest) - 8;
654         Regs->ss = ((Dest+1)<<4) | Dest;
655         // Check if the GP Segs are GDT, then change them
656         if(!(Regs->ds & 4))     Regs->ds = ((Dest+1)<<4) | Dest;
657         if(!(Regs->es & 4))     Regs->es = ((Dest+1)<<4) | Dest;
658         if(!(Regs->fs & 4))     Regs->fs = ((Dest+1)<<4) | Dest;
659         if(!(Regs->gs & 4))     Regs->gs = ((Dest+1)<<4) | Dest;
660         
661         return 0;
662 }
663
664 /**
665  * \fn void Proc_Scheduler(int CPU)
666  * \brief Swap current thread and clears dead threads
667  */
668 void Proc_Scheduler(int CPU)
669 {
670         Uint    esp, ebp, eip;
671         tThread *thread;
672         
673         // If the spinlock is set, let it complete
674         if(giThreadListLock)    return;
675         
676         // Clear Delete Queue
677         while(gDeleteThreads)
678         {
679                 thread = gDeleteThreads->Next;
680                 if(gDeleteThreads->IsLocked) {  // Only free if structure is unused
681                         gDeleteThreads->Status = THREAD_STAT_NULL;
682                         free( gDeleteThreads );
683                 }
684                 gDeleteThreads = thread;
685         }
686         
687         // Check if there is any tasks running
688         if(giNumActiveThreads == 0) {
689                 Log("No Active threads, sleeping");
690                 __asm__ __volatile__ ("hlt");
691                 return;
692         }
693         
694         // Get current thread
695         #if USE_MP
696         thread = gaCPUs[CPU].Current;
697         #else
698         thread = gCurrentThread;
699         #endif
700         
701         // Reduce remaining quantum and continue timeslice if non-zero
702         if(thread->Remaining--) return;
703         // Reset quantum for next call
704         thread->Remaining = thread->Quantum;
705         
706         // Get machine state
707         __asm__ __volatile__ ("mov %%esp, %0":"=r"(esp));
708         __asm__ __volatile__ ("mov %%ebp, %0":"=r"(ebp));
709         eip = GetEIP();
710         if(eip == SWITCH_MAGIC) return; // Check if a switch happened
711         
712         // Save machine state
713         thread->SavedState.ESP = esp;
714         thread->SavedState.EBP = ebp;
715         thread->SavedState.EIP = eip;
716         
717         // Get next thread
718         thread = Threads_GetNextToRun(CPU);
719         
720         // Error Check
721         if(thread == NULL) {
722                 Warning("Hmm... Threads_GetNextToRun returned NULL, I don't think this should happen.\n");
723                 return;
724         }
725         
726         #if DEBUG_TRACE_SWITCH
727         Log("Switching to task %i, CR3 = 0x%x, EIP = %p",
728                 thread->TID,
729                 thread->MemState.CR3,
730                 thread->SavedState.EIP
731                 );
732         #endif
733         
734         // Set current thread
735         #if USE_MP
736         gaCPUs[CPU].Current = thread;
737         #else
738         gCurrentThread = thread;
739         #endif
740         
741         // Update Kernel Stack pointer
742         gTSSs[CPU].ESP0 = thread->KernelStack;
743         
744         // Set address space
745         #if USE_PAE
746         # error "Todo: Implement PAE Address space switching"
747         #else
748                 __asm__ __volatile__ ("mov %0, %%cr3"::"a"(thread->MemState.CR3));
749         #endif
750         // Switch threads
751         __asm__ __volatile__ (
752                 "mov %1, %%esp\n\t"     // Restore ESP
753                 "mov %2, %%ebp\n\t"     // and EBP
754                 "jmp *%3" : :   // And return to where we saved state (Proc_Clone or Proc_Scheduler)
755                 "a"(SWITCH_MAGIC), "b"(thread->SavedState.ESP),
756                 "d"(thread->SavedState.EBP), "c"(thread->SavedState.EIP)
757                 );
758         for(;;);        // Shouldn't reach here
759 }
760
761 // === EXPORTS ===
762 EXPORT(Proc_SpawnWorker);

UCC git Repository :: git.ucc.asn.au