Kernel/x86 - Fixed warnings in newer versions of GCC
[tpg/acess2.git] / Kernel / arch / x86 / proc.c
1 /*
2  * AcessOS Microkernel Version
3  * proc.c
4  */
5 #include <acess.h>
6 #include <threads.h>
7 #include <proc.h>
8 #include <desctab.h>
9 #include <mm_virt.h>
10 #include <errno.h>
11 #if USE_MP
12 # include <mp.h>
13 #endif
14 #include <hal_proc.h>
15
16 // === FLAGS ===
17 #define DEBUG_TRACE_SWITCH      0
18 #define DEBUG_DISABLE_DOUBLEFAULT       1
19 #define DEBUG_VERY_SLOW_SWITCH  0
20
21 // === CONSTANTS ===
22 // Base is 1193182
23 #define TIMER_BASE      1193182
24 #if DEBUG_VERY_SLOW_PERIOD
25 # define TIMER_DIVISOR  1193    //~10Hz switch, with 10 quantum = 1s per thread
26 #else
27 # define TIMER_DIVISOR  11932   //~100Hz
28 #endif
29
30 // === TYPES ===
31 typedef struct sCPU
32 {
33         Uint8   APICID;
34         Uint8   State;  // 0: Unavaliable, 1: Idle, 2: Active
35         Uint16  Resvd;
36         tThread *Current;
37         tThread *IdleThread;
38 }       tCPU;
39
40 // === IMPORTS ===
41 extern tGDT     gGDT[];
42 extern tIDT     gIDT[];
43 extern void     APWait(void);   // 16-bit AP pause code
44 extern void     APStartup(void);        // 16-bit AP startup code
45 extern Uint     GetEIP(void);   // start.asm
46 extern Uint     GetEIP_Sched(void);     // proc.asm
47 extern void     NewTaskHeader(tThread *Thread, void *Fcn, int nArgs, ...);      // Actually takes cdecl args
48 extern Uint     Proc_CloneInt(Uint *ESP, Uint *CR3);
49 extern Uint32   gaInitPageDir[1024];    // start.asm
50 extern char     Kernel_Stack_Top[];
51 extern tShortSpinlock   glThreadListLock;
52 extern int      giNumCPUs;
53 extern int      giNextTID;
54 extern tThread  gThreadZero;
55 extern void     Isr8(void);     // Double Fault
56 extern void     Proc_ReturnToUser(tVAddr Handler, Uint Argument, tVAddr KernelStack);
57 extern char     scheduler_return[];     // Return address in SchedulerBase
58 extern char     IRQCommon[];    // Common IRQ handler code
59 extern char     IRQCommon_handled[];    // IRQCommon call return location
60 extern char     GetEIP_Sched_ret[];     // GetEIP call return location
61 extern void     Threads_AddToDelete(tThread *Thread);
62 extern void     SwitchTasks(Uint NewSP, Uint *OldSP, Uint NewIP, Uint *OldIO, Uint CR3);
63
64 // === PROTOTYPES ===
65 //void  ArchThreads_Init(void);
66 #if USE_MP
67 void    MP_StartAP(int CPU);
68 void    MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode);
69 #endif
70 void    Proc_IdleThread(void *Ptr);
71 //void  Proc_Start(void);
72 //tThread       *Proc_GetCurThread(void);
73 void    Proc_ChangeStack(void);
74  int    Proc_NewKThread(void (*Fcn)(void*), void *Data);
75 // int  Proc_Clone(Uint *Err, Uint Flags);
76 Uint    Proc_MakeUserStack(void);
77 //void  Proc_StartUser(Uint Entrypoint, Uint *Bases, int ArgC, char **ArgV, char **EnvP, int DataSize);
78 void    Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP) NORETURN;
79  int    Proc_Demote(Uint *Err, int Dest, tRegs *Regs);
80 //void  Proc_CallFaultHandler(tThread *Thread);
81 //void  Proc_DumpThreadCPUState(tThread *Thread);
82 void    Proc_Scheduler(int CPU);
83
84 // === GLOBALS ===
85 // --- Multiprocessing ---
86 #if USE_MP
87 volatile int    giNumInitingCPUs = 0;
88 tMPInfo *gMPFloatPtr = NULL;
89 volatile Uint32 giMP_TimerCount;        // Start Count for Local APIC Timer
90 tAPIC   *gpMP_LocalAPIC = NULL;
91 Uint8   gaAPIC_to_CPU[256] = {0};
92  int    giProc_BootProcessorID = 0;
93 tTSS    gaTSSs[MAX_CPUS];       // TSS Array
94 #endif
95 tCPU    gaCPUs[MAX_CPUS];
96 tTSS    *gTSSs = NULL;  // Pointer to TSS array
97 tTSS    gTSS0 = {0};
98 // --- Error Recovery ---
99 char    gaDoubleFaultStack[1024] __attribute__ ((section(".padata")));
100 tTSS    gDoubleFault_TSS = {
101         .ESP0 = (Uint)&gaDoubleFaultStack[1024],
102         .SS0 = 0x10,
103         .CR3 = (Uint)gaInitPageDir - KERNEL_BASE,
104         .EIP = (Uint)Isr8,
105         .ESP = (Uint)&gaDoubleFaultStack[1024],
106         .CS = 0x08,     .SS = 0x10,
107         .DS = 0x10,     .ES = 0x10,
108         .FS = 0x10,     .GS = 0x10,
109 };
110
111 // === CODE ===
112 /**
113  * \fn void ArchThreads_Init(void)
114  * \brief Starts the process scheduler
115  */
116 void ArchThreads_Init(void)
117 {
118         Uint    pos = 0;
119         
120         #if USE_MP
121         tMPTable        *mptable;
122         
123         // Mark BSP as active
124         gaCPUs[0].State = 2;
125         
126         // -- Initialise Multiprocessing
127         // Find MP Floating Table
128         // - EBDA/Last 1Kib (640KiB)
129         for(pos = KERNEL_BASE|0x9F000; pos < (KERNEL_BASE|0xA0000); pos += 16) {
130                 if( *(Uint*)(pos) == MPPTR_IDENT ) {
131                         Log("Possible %p", pos);
132                         if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
133                         gMPFloatPtr = (void*)pos;
134                         break;
135                 }
136         }
137         // - Last KiB (512KiB base mem)
138         if(!gMPFloatPtr) {
139                 for(pos = KERNEL_BASE|0x7F000; pos < (KERNEL_BASE|0x80000); pos += 16) {
140                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
141                                 Log("Possible %p", pos);
142                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
143                                 gMPFloatPtr = (void*)pos;
144                                 break;
145                         }
146                 }
147         }
148         // - BIOS ROM
149         if(!gMPFloatPtr) {
150                 for(pos = KERNEL_BASE|0xE0000; pos < (KERNEL_BASE|0x100000); pos += 16) {
151                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
152                                 Log("Possible %p", pos);
153                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
154                                 gMPFloatPtr = (void*)pos;
155                                 break;
156                         }
157                 }
158         }
159         
160         // If the MP Table Exists, parse it
161         if(gMPFloatPtr)
162         {
163                  int    i;
164                 tMPTable_Ent    *ents;
165                 Log("gMPFloatPtr = %p", gMPFloatPtr);
166                 Log("*gMPFloatPtr = {");
167                 Log("\t.Sig = 0x%08x", gMPFloatPtr->Sig);
168                 Log("\t.MPConfig = 0x%08x", gMPFloatPtr->MPConfig);
169                 Log("\t.Length = 0x%02x", gMPFloatPtr->Length);
170                 Log("\t.Version = 0x%02x", gMPFloatPtr->Version);
171                 Log("\t.Checksum = 0x%02x", gMPFloatPtr->Checksum);
172                 Log("\t.Features = [0x%02x,0x%02x,0x%02x,0x%02x,0x%02x]",
173                         gMPFloatPtr->Features[0],       gMPFloatPtr->Features[1],
174                         gMPFloatPtr->Features[2],       gMPFloatPtr->Features[3],
175                         gMPFloatPtr->Features[4]
176                         );
177                 Log("}");
178                 
179                 mptable = (void*)( KERNEL_BASE|gMPFloatPtr->MPConfig );
180                 Log("mptable = %p", mptable);
181                 Log("*mptable = {");
182                 Log("\t.Sig = 0x%08x", mptable->Sig);
183                 Log("\t.BaseTableLength = 0x%04x", mptable->BaseTableLength);
184                 Log("\t.SpecRev = 0x%02x", mptable->SpecRev);
185                 Log("\t.Checksum = 0x%02x", mptable->Checksum);
186                 Log("\t.OEMID = '%8c'", mptable->OemID);
187                 Log("\t.ProductID = '%8c'", mptable->ProductID);
188                 Log("\t.OEMTablePtr = %p'", mptable->OEMTablePtr);
189                 Log("\t.OEMTableSize = 0x%04x", mptable->OEMTableSize);
190                 Log("\t.EntryCount = 0x%04x", mptable->EntryCount);
191                 Log("\t.LocalAPICMemMap = 0x%08x", mptable->LocalAPICMemMap);
192                 Log("\t.ExtendedTableLen = 0x%04x", mptable->ExtendedTableLen);
193                 Log("\t.ExtendedTableChecksum = 0x%02x", mptable->ExtendedTableChecksum);
194                 Log("}");
195                 
196                 gpMP_LocalAPIC = (void*)MM_MapHWPages(mptable->LocalAPICMemMap, 1);
197                 
198                 ents = mptable->Entries;
199                 giNumCPUs = 0;
200                 
201                 for( i = 0; i < mptable->EntryCount; i ++ )
202                 {
203                          int    entSize = 0;
204                         switch( ents->Type )
205                         {
206                         case 0: // Processor
207                                 entSize = 20;
208                                 Log("%i: Processor", i);
209                                 Log("\t.APICID = %i", ents->Proc.APICID);
210                                 Log("\t.APICVer = 0x%02x", ents->Proc.APICVer);
211                                 Log("\t.CPUFlags = 0x%02x", ents->Proc.CPUFlags);
212                                 Log("\t.CPUSignature = 0x%08x", ents->Proc.CPUSignature);
213                                 Log("\t.FeatureFlags = 0x%08x", ents->Proc.FeatureFlags);
214                                 
215                                 
216                                 if( !(ents->Proc.CPUFlags & 1) ) {
217                                         Log("DISABLED");
218                                         break;
219                                 }
220                                 
221                                 // Check if there is too many processors
222                                 if(giNumCPUs >= MAX_CPUS) {
223                                         giNumCPUs ++;   // If `giNumCPUs` > MAX_CPUS later, it will be clipped
224                                         break;
225                                 }
226                                 
227                                 // Initialise CPU Info
228                                 gaAPIC_to_CPU[ents->Proc.APICID] = giNumCPUs;
229                                 gaCPUs[giNumCPUs].APICID = ents->Proc.APICID;
230                                 gaCPUs[giNumCPUs].State = 0;
231                                 giNumCPUs ++;
232                                 
233                                 // Set BSP Variable
234                                 if( ents->Proc.CPUFlags & 2 ) {
235                                         giProc_BootProcessorID = giNumCPUs-1;
236                                 }
237                                 
238                                 break;
239                         
240                         #if DUMP_MP_TABLES
241                         case 1: // Bus
242                                 entSize = 8;
243                                 Log("%i: Bus", i);
244                                 Log("\t.ID = %i", ents->Bus.ID);
245                                 Log("\t.TypeString = '%6C'", ents->Bus.TypeString);
246                                 break;
247                         case 2: // I/O APIC
248                                 entSize = 8;
249                                 Log("%i: I/O APIC", i);
250                                 Log("\t.ID = %i", ents->IOAPIC.ID);
251                                 Log("\t.Version = 0x%02x", ents->IOAPIC.Version);
252                                 Log("\t.Flags = 0x%02x", ents->IOAPIC.Flags);
253                                 Log("\t.Addr = 0x%08x", ents->IOAPIC.Addr);
254                                 break;
255                         case 3: // I/O Interrupt Assignment
256                                 entSize = 8;
257                                 Log("%i: I/O Interrupt Assignment", i);
258                                 Log("\t.IntType = %i", ents->IOInt.IntType);
259                                 Log("\t.Flags = 0x%04x", ents->IOInt.Flags);
260                                 Log("\t.SourceBusID = 0x%02x", ents->IOInt.SourceBusID);
261                                 Log("\t.SourceBusIRQ = 0x%02x", ents->IOInt.SourceBusIRQ);
262                                 Log("\t.DestAPICID = 0x%02x", ents->IOInt.DestAPICID);
263                                 Log("\t.DestAPICIRQ = 0x%02x", ents->IOInt.DestAPICIRQ);
264                                 break;
265                         case 4: // Local Interrupt Assignment
266                                 entSize = 8;
267                                 Log("%i: Local Interrupt Assignment", i);
268                                 Log("\t.IntType = %i", ents->LocalInt.IntType);
269                                 Log("\t.Flags = 0x%04x", ents->LocalInt.Flags);
270                                 Log("\t.SourceBusID = 0x%02x", ents->LocalInt.SourceBusID);
271                                 Log("\t.SourceBusIRQ = 0x%02x", ents->LocalInt.SourceBusIRQ);
272                                 Log("\t.DestLocalAPICID = 0x%02x", ents->LocalInt.DestLocalAPICID);
273                                 Log("\t.DestLocalAPICIRQ = 0x%02x", ents->LocalInt.DestLocalAPICIRQ);
274                                 break;
275                         default:
276                                 Log("%i: Unknown (%i)", i, ents->Type);
277                                 break;
278                         #endif
279                         }
280                         ents = (void*)( (Uint)ents + entSize );
281                 }
282                 
283                 if( giNumCPUs > MAX_CPUS ) {
284                         Warning("Too many CPUs detected (%i), only using %i of them", giNumCPUs, MAX_CPUS);
285                         giNumCPUs = MAX_CPUS;
286                 }
287                 gTSSs = gaTSSs;
288         }
289         else {
290                 Log("No MP Table was found, assuming uniprocessor\n");
291                 giNumCPUs = 1;
292                 gTSSs = &gTSS0;
293         }
294         #else
295         giNumCPUs = 1;
296         gTSSs = &gTSS0;
297         #endif
298         
299         #if !DEBUG_DISABLE_DOUBLEFAULT
300         // Initialise Double Fault TSS
301         gGDT[5].BaseLow = (Uint)&gDoubleFault_TSS & 0xFFFF;
302         gGDT[5].BaseMid = (Uint)&gDoubleFault_TSS >> 16;
303         gGDT[5].BaseHi = (Uint)&gDoubleFault_TSS >> 24;
304         
305         // Set double fault IDT to use the new TSS
306         gIDT[8].OffsetLo = 0;
307         gIDT[8].CS = 5<<3;
308         gIDT[8].Flags = 0x8500;
309         gIDT[8].OffsetHi = 0;
310         #endif
311         
312         // Set timer frequency
313         outb(0x43, 0x34);       // Set Channel 0, Low/High, Rate Generator
314         outb(0x40, TIMER_DIVISOR&0xFF); // Low Byte of Divisor
315         outb(0x40, (TIMER_DIVISOR>>8)&0xFF);    // High Byte
316         
317         Log("Timer Frequency %i.%03i Hz",
318                 TIMER_BASE/TIMER_DIVISOR,
319                 ((Uint64)TIMER_BASE*1000/TIMER_DIVISOR)%1000
320                 );
321         
322         #if USE_MP
323         // Get the count setting for APIC timer
324         Log("Determining APIC Count");
325         __asm__ __volatile__ ("sti");
326         while( giMP_TimerCount == 0 )   __asm__ __volatile__ ("hlt");
327         __asm__ __volatile__ ("cli");
328         Log("APIC Count %i", giMP_TimerCount);
329         {
330                 Uint64  freq = giMP_TimerCount;
331                 freq /= TIMER_DIVISOR;
332                 freq *= TIMER_BASE;
333                 if( (freq /= 1000) < 2*1000)
334                         Log("Bus Frequency %i KHz", freq);
335                 else if( (freq /= 1000) < 2*1000)
336                         Log("Bus Frequency %i MHz", freq);
337                 else if( (freq /= 1000) < 2*1000)
338                         Log("Bus Frequency %i GHz", freq);
339                 else
340                         Log("Bus Frequency %i THz", freq);
341         }
342         
343         // Initialise Normal TSS(s)
344         for(pos=0;pos<giNumCPUs;pos++)
345         {
346         #else
347         pos = 0;
348         #endif
349                 gTSSs[pos].SS0 = 0x10;
350                 gTSSs[pos].ESP0 = 0;    // Set properly by scheduler
351                 gGDT[6+pos].BaseLow = ((Uint)(&gTSSs[pos])) & 0xFFFF;
352                 gGDT[6+pos].BaseMid = ((Uint)(&gTSSs[pos]) >> 16) & 0xFFFF;
353                 gGDT[6+pos].BaseHi = ((Uint)(&gTSSs[pos])) >> 24;
354         #if USE_MP
355         }
356         #endif
357         
358         // Load the BSP's TSS
359         __asm__ __volatile__ ("ltr %%ax"::"a"(0x30));
360         // Set Current Thread and CPU Number in DR0 and DR1
361         __asm__ __volatile__ ("mov %0, %%db0"::"r"(&gThreadZero));
362         __asm__ __volatile__ ("mov %0, %%db1"::"r"(0));
363         
364         gaCPUs[0].Current = &gThreadZero;
365         gThreadZero.CurCPU = 0;
366         
367         gThreadZero.MemState.CR3 = (Uint)gaInitPageDir - KERNEL_BASE;
368         
369         // Create Per-Process Data Block
370         if( !MM_Allocate(MM_PPD_CFG) )
371         {
372                 Panic("OOM - No space for initial Per-Process Config");
373         }
374         
375         // Change Stacks
376         Proc_ChangeStack();
377 }
378
379 #if USE_MP
380 void MP_StartAP(int CPU)
381 {
382         Log("Starting AP %i (APIC %i)", CPU, gaCPUs[CPU].APICID);
383         
384         // Set location of AP startup code and mark for a warm restart
385         *(Uint16*)(KERNEL_BASE|0x467) = (Uint)&APWait - (KERNEL_BASE|0xFFFF0);
386         *(Uint16*)(KERNEL_BASE|0x469) = 0xFFFF;
387         outb(0x70, 0x0F);       outb(0x71, 0x0A);       // Set warm reset flag
388         MP_SendIPI(gaCPUs[CPU].APICID, 0, 5);   // Init IPI
389         
390         // Delay
391         inb(0x80); inb(0x80); inb(0x80); inb(0x80);
392         
393         // TODO: Use a better address, preferably registered with the MM
394         // - MM_AllocDMA mabye?
395         // Create a far jump
396         *(Uint8*)(KERNEL_BASE|0x11000) = 0xEA;  // Far JMP
397         *(Uint16*)(KERNEL_BASE|0x11001) = (Uint)&APStartup - (KERNEL_BASE|0xFFFF0);     // IP
398         *(Uint16*)(KERNEL_BASE|0x11003) = 0xFFFF;       // CS
399         // Send a Startup-IPI to make the CPU execute at 0x11000 (which we
400         // just filled)
401         MP_SendIPI(gaCPUs[CPU].APICID, 0x11, 6);        // StartupIPI
402         
403         giNumInitingCPUs ++;
404 }
405
406 /**
407  * \brief Send an Inter-Processor Interrupt
408  * \param APICID        Processor's Local APIC ID
409  * \param Vector        Argument of some kind
410  * \param DeliveryMode  Type of signal?
411  */
412 void MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode)
413 {
414         Uint32  val;
415         
416         // Hi
417         val = (Uint)APICID << 24;
418         Log("*%p = 0x%08x", &gpMP_LocalAPIC->ICR[1], val);
419         gpMP_LocalAPIC->ICR[1].Val = val;
420         // Low (and send)
421         val = ((DeliveryMode & 7) << 8) | (Vector & 0xFF);
422         Log("*%p = 0x%08x", &gpMP_LocalAPIC->ICR[0], val);
423         gpMP_LocalAPIC->ICR[0].Val = val;
424 }
425 #endif
426
427 void Proc_IdleThread(void *Ptr)
428 {
429         tCPU    *cpu = Ptr;
430         cpu->IdleThread->ThreadName = strdup("Idle Thread");
431         Threads_SetPriority( cpu->IdleThread, -1 );     // Never called randomly
432         cpu->IdleThread->Quantum = 1;   // 1 slice quantum
433         for(;;) {
434                 HALT();
435                 Proc_Reschedule();
436         }
437 }
438
439 /**
440  * \fn void Proc_Start(void)
441  * \brief Start process scheduler
442  */
443 void Proc_Start(void)
444 {
445          int    tid;
446         #if USE_MP
447          int    i;
448         #endif
449         
450         #if USE_MP
451         // Start APs
452         for( i = 0; i < giNumCPUs; i ++ )
453         {
454                 if(i)   gaCPUs[i].Current = NULL;
455                 
456                 // Create Idle Task
457                 tid = Proc_NewKThread(Proc_IdleThread, &gaCPUs[i]);
458                 gaCPUs[i].IdleThread = Threads_GetThread(tid);
459                 
460                 // Start the AP
461                 if( i != giProc_BootProcessorID ) {
462                         MP_StartAP( i );
463                 }
464         }
465         
466         // BSP still should run the current task
467         gaCPUs[0].Current = &gThreadZero;
468         
469         // Start interrupts and wait for APs to come up
470         Log("Waiting for APs to come up\n");
471         __asm__ __volatile__ ("sti");
472         while( giNumInitingCPUs )       __asm__ __volatile__ ("hlt");
473         #else
474         // Create Idle Task
475         tid = Proc_NewKThread(Proc_IdleThread, &gaCPUs[0]);
476         gaCPUs[0].IdleThread = Threads_GetThread(tid);
477         
478         // Set current task
479         gaCPUs[0].Current = &gThreadZero;
480
481 //      while( gaCPUs[0].IdleThread == NULL )
482 //              Threads_Yield();
483         
484         // Start Interrupts (and hence scheduler)
485         __asm__ __volatile__("sti");
486         #endif
487         MM_FinishVirtualInit();
488 }
489
490 /**
491  * \fn tThread *Proc_GetCurThread(void)
492  * \brief Gets the current thread
493  */
494 tThread *Proc_GetCurThread(void)
495 {
496         #if USE_MP
497         return gaCPUs[ GetCPUNum() ].Current;
498         #else
499         return gaCPUs[ 0 ].Current;
500         #endif
501 }
502
503 /**
504  * \fn void Proc_ChangeStack(void)
505  * \brief Swaps the current stack for a new one (in the proper stack reigon)
506  */
507 void Proc_ChangeStack(void)
508 {
509         Uint    esp, ebp;
510         Uint    tmpEbp, oldEsp;
511         Uint    curBase, newBase;
512
513         __asm__ __volatile__ ("mov %%esp, %0":"=r"(esp));
514         __asm__ __volatile__ ("mov %%ebp, %0":"=r"(ebp));
515
516         oldEsp = esp;
517
518         // Create new KStack
519         newBase = MM_NewKStack();
520         // Check for errors
521         if(newBase == 0) {
522                 Panic("What the?? Unable to allocate space for initial kernel stack");
523                 return;
524         }
525
526         curBase = (Uint)&Kernel_Stack_Top;
527         
528         LOG("curBase = 0x%x, newBase = 0x%x", curBase, newBase);
529
530         // Get ESP as a used size
531         esp = curBase - esp;
532         LOG("memcpy( %p, %p, 0x%x )", (void*)(newBase - esp), (void*)(curBase - esp), esp );
533         // Copy used stack
534         memcpy( (void*)(newBase - esp), (void*)(curBase - esp), esp );
535         // Get ESP as an offset in the new stack
536         esp = newBase - esp;
537         // Adjust EBP
538         ebp = newBase - (curBase - ebp);
539
540         // Repair EBPs & Stack Addresses
541         // Catches arguments also, but may trash stack-address-like values
542         for(tmpEbp = esp; tmpEbp < newBase; tmpEbp += 4)
543         {
544                 if(oldEsp < *(Uint*)tmpEbp && *(Uint*)tmpEbp < curBase)
545                         *(Uint*)tmpEbp += newBase - curBase;
546         }
547         
548         Proc_GetCurThread()->KernelStack = newBase;
549         
550         __asm__ __volatile__ ("mov %0, %%esp"::"r"(esp));
551         __asm__ __volatile__ ("mov %0, %%ebp"::"r"(ebp));
552 }
553
554 int Proc_NewKThread(void (*Fcn)(void*), void *Data)
555 {
556         Uint    esp;
557         tThread *newThread, *cur;
558         
559         cur = Proc_GetCurThread();
560         newThread = Threads_CloneTCB(0);
561         if(!newThread)  return -1;
562         
563         // Set CR3
564         newThread->MemState.CR3 = cur->MemState.CR3;
565
566         // Create new KStack
567         newThread->KernelStack = MM_NewKStack();
568         // Check for errors
569         if(newThread->KernelStack == 0) {
570                 free(newThread);
571                 return -1;
572         }
573
574         esp = newThread->KernelStack;
575         *(Uint*)(esp-=4) = (Uint)Data;  // Data (shadowed)
576         *(Uint*)(esp-=4) = 1;   // Number of params
577         *(Uint*)(esp-=4) = (Uint)Fcn;   // Function to call
578         *(Uint*)(esp-=4) = (Uint)newThread;     // Thread ID
579         
580         newThread->SavedState.ESP = esp;
581         newThread->SavedState.EIP = (Uint)&NewTaskHeader;
582         Log("New (KThread) %p, esp = %p\n", newThread->SavedState.EIP, newThread->SavedState.ESP);
583         
584 //      MAGIC_BREAK();  
585         Threads_AddActive(newThread);
586
587         return newThread->TID;
588 }
589
590 /**
591  * \fn int Proc_Clone(Uint *Err, Uint Flags)
592  * \brief Clone the current process
593  */
594 int Proc_Clone(Uint Flags)
595 {
596         tThread *newThread;
597         tThread *cur = Proc_GetCurThread();
598         Uint    eip;
599
600         // Sanity, please
601         if( !(Flags & CLONE_VM) ) {
602                 Log_Error("Proc", "Proc_Clone: Don't leave CLONE_VM unset, use Proc_NewKThread instead");
603                 return -1;
604         }
605         
606         // New thread
607         newThread = Threads_CloneTCB(Flags);
608         if(!newThread)  return -1;
609
610         newThread->KernelStack = cur->KernelStack;
611
612         // Clone state
613         eip = Proc_CloneInt(&newThread->SavedState.ESP, &newThread->MemState.CR3);
614         if( eip == 0 ) {
615                 // ACK the interrupt
616                 return 0;
617         }
618         newThread->SavedState.EIP = eip;
619         
620         // Check for errors
621         if( newThread->MemState.CR3 == 0 ) {
622                 Log_Error("Proc", "Proc_Clone: MM_Clone failed");
623                 Threads_AddToDelete(newThread);
624                 return -1;
625         }
626
627         // Add the new thread to the run queue
628         Threads_AddActive(newThread);
629         return newThread->TID;
630 }
631
632 /**
633  * \fn int Proc_SpawnWorker(void)
634  * \brief Spawns a new worker thread
635  */
636 int Proc_SpawnWorker(void (*Fcn)(void*), void *Data)
637 {
638         tThread *new;
639         Uint    stack_contents[4];
640         
641         // Create new thread
642         new = Threads_CloneThreadZero();
643         if(!new) {
644                 Warning("Proc_SpawnWorker - Out of heap space!\n");
645                 return -1;
646         }
647
648         // Create the stack contents
649         stack_contents[3] = (Uint)Data;
650         stack_contents[2] = 1;
651         stack_contents[1] = (Uint)Fcn;
652         stack_contents[0] = (Uint)new;
653         
654         // Create a new worker stack (in PID0's address space)
655         new->KernelStack = MM_NewWorkerStack(stack_contents, sizeof(stack_contents));
656
657         // Save core machine state
658         new->SavedState.ESP = new->KernelStack - sizeof(stack_contents);
659         new->SavedState.EBP = 0;
660         new->SavedState.EIP = (Uint)NewTaskHeader;
661         
662         // Mark as active
663         new->Status = THREAD_STAT_PREINIT;
664         Threads_AddActive( new );
665         
666         return new->TID;
667 }
668
669 /**
670  * \fn Uint Proc_MakeUserStack(void)
671  * \brief Creates a new user stack
672  */
673 Uint Proc_MakeUserStack(void)
674 {
675          int    i;
676         Uint    base = USER_STACK_TOP - USER_STACK_SZ;
677         
678         // Check Prospective Space
679         for( i = USER_STACK_SZ >> 12; i--; )
680                 if( MM_GetPhysAddr( base + (i<<12) ) != 0 )
681                         break;
682         
683         if(i != -1)     return 0;
684         
685         // Allocate Stack - Allocate incrementally to clean up MM_Dump output
686         for( i = 0; i < USER_STACK_SZ/0x1000; i++ )
687         {
688                 if( !MM_Allocate( base + (i<<12) ) )
689                 {
690                         Warning("OOM: Proc_MakeUserStack");
691                         return 0;
692                 }
693         }
694         
695         return base + USER_STACK_SZ;
696 }
697
698 void Proc_StartUser(Uint Entrypoint, Uint Base, int ArgC, char **ArgV, int DataSize)
699 {
700         Uint    *stack;
701          int    i;
702         char    **envp = NULL;
703         Uint16  ss, cs;
704         
705         // Copy data to the user stack and free original buffer
706         stack = (void*)Proc_MakeUserStack();
707         stack -= DataSize/sizeof(*stack);
708         memcpy( stack, ArgV, DataSize );
709         free(ArgV);
710         
711         // Adjust Arguments and environment
712         if( DataSize )
713         {
714                 Uint delta = (Uint)stack - (Uint)ArgV;
715                 ArgV = (char**)stack;
716                 for( i = 0; ArgV[i]; i++ )      ArgV[i] += delta;
717                 envp = &ArgV[i+1];
718                 for( i = 0; envp[i]; i++ )      envp[i] += delta;
719         }
720         
721         // User Mode Segments
722         ss = 0x23;      cs = 0x1B;
723         
724         // Arguments
725         *--stack = (Uint)envp;
726         *--stack = (Uint)ArgV;
727         *--stack = (Uint)ArgC;
728         *--stack = Base;
729         
730         Proc_StartProcess(ss, (Uint)stack, 0x202, cs, Entrypoint);
731 }
732
733 void Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP)
734 {
735         Uint    *stack = (void*)Stack;
736         *--stack = SS;          //Stack Segment
737         *--stack = Stack;       //Stack Pointer
738         *--stack = Flags;       //EFLAGS (Resvd (0x2) and IF (0x20))
739         *--stack = CS;          //Code Segment
740         *--stack = IP;  //EIP
741         //PUSHAD
742         *--stack = 0xAAAAAAAA;  // eax
743         *--stack = 0xCCCCCCCC;  // ecx
744         *--stack = 0xDDDDDDDD;  // edx
745         *--stack = 0xBBBBBBBB;  // ebx
746         *--stack = 0xD1D1D1D1;  // edi
747         *--stack = 0x54545454;  // esp - NOT POPED
748         *--stack = 0x51515151;  // esi
749         *--stack = 0xB4B4B4B4;  // ebp
750         //Individual PUSHs
751         *--stack = SS;  // ds
752         *--stack = SS;  // es
753         *--stack = SS;  // fs
754         *--stack = SS;  // gs
755         
756         __asm__ __volatile__ (
757         "mov %%eax,%%esp;\n\t"  // Set stack pointer
758         "pop %%gs;\n\t"
759         "pop %%fs;\n\t"
760         "pop %%es;\n\t"
761         "pop %%ds;\n\t"
762         "popa;\n\t"
763         "iret;\n\t" : : "a" (stack));
764         for(;;);
765 }
766
767 /**
768  * \fn int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
769  * \brief Demotes a process to a lower permission level
770  * \param Err   Pointer to user's errno
771  * \param Dest  New Permission Level
772  * \param Regs  Pointer to user's register structure
773  */
774 int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
775 {
776          int    cpl = Regs->cs & 3;
777         // Sanity Check
778         if(Dest > 3 || Dest < 0) {
779                 *Err = -EINVAL;
780                 return -1;
781         }
782         
783         // Permission Check
784         if(cpl > Dest) {
785                 *Err = -EACCES;
786                 return -1;
787         }
788         
789         // Change the Segment Registers
790         Regs->cs = (((Dest+1)<<4) | Dest) - 8;
791         Regs->ss = ((Dest+1)<<4) | Dest;
792         // Check if the GP Segs are GDT, then change them
793         if(!(Regs->ds & 4))     Regs->ds = ((Dest+1)<<4) | Dest;
794         if(!(Regs->es & 4))     Regs->es = ((Dest+1)<<4) | Dest;
795         if(!(Regs->fs & 4))     Regs->fs = ((Dest+1)<<4) | Dest;
796         if(!(Regs->gs & 4))     Regs->gs = ((Dest+1)<<4) | Dest;
797         
798         return 0;
799 }
800
801 /**
802  * \brief Calls a signal handler in user mode
803  * \note Used for signals
804  */
805 void Proc_CallFaultHandler(tThread *Thread)
806 {
807         // Rewinds the stack and calls the user function
808         // Never returns
809         Proc_ReturnToUser( Thread->FaultHandler, Thread->CurFaultNum, Thread->KernelStack );
810         for(;;);
811 }
812
813 void Proc_DumpThreadCPUState(tThread *Thread)
814 {
815         if( Thread->CurCPU > -1 )
816         {
817                  int    maxBacktraceDistance = 6;
818                 tRegs   *regs = NULL;
819                 Uint32  *stack;
820                 
821                 if( Thread->CurCPU != GetCPUNum() ) {
822                         Log("  Currently running");
823                         return ;
824                 }
825                 
826                 // Backtrace to find the IRQ entrypoint
827                 // - This will usually only be called by an IRQ, so this should
828                 //   work
829                 __asm__ __volatile__ ("mov %%ebp, %0" : "=r" (stack));
830                 while( maxBacktraceDistance -- )
831                 {
832                         // [ebp] = oldEbp
833                         // [ebp+4] = retaddr
834                         
835                         if( stack[1] == (tVAddr)&IRQCommon_handled ) {
836                                 regs = (void*)stack[2];
837                                 break;
838                         }
839                         
840                         stack = (void*)stack[0];
841                 }
842                 
843                 if( !regs ) {
844                         Log("  Unable to find IRQ Entry");
845                         return ;
846                 }
847                 
848                 Log("  at %04x:%08x", regs->cs, regs->eip);
849                 return ;
850         }
851         
852         #if 1
853         tVAddr  diffFromScheduler = Thread->SavedState.EIP - (tVAddr)SwitchTasks;
854         tVAddr  diffFromClone = Thread->SavedState.EIP - (tVAddr)Proc_CloneInt;
855         tVAddr  diffFromSpawn = Thread->SavedState.EIP - (tVAddr)NewTaskHeader;
856         
857         if( diffFromClone > 0 && diffFromClone < 40 )   // When I last checked, .newTask was at .+27
858         {
859                 Log("  Creating process");
860                 return ;
861         }
862         
863         if( diffFromSpawn == 0 )
864         {
865                 Log("  Creating thread");
866                 return ;
867         }
868         
869         if( diffFromScheduler > 0 && diffFromScheduler < 128 )  // When I last checked, GetEIP was at .+0x30
870         #else
871         Uint32  data[3];
872         MM_ReadFromAddrSpace(Thread->MemState.CR3, Thread->SavedState.EBP, data, 12);
873         if( data[1] == (Uint32)&IRQCommon + 25 )
874         {
875                 tRegs   *regs = (void *) data[2];
876                 Log("  oldebp = 0x%08x, ret = 0x%08x, regs = 0x%x",
877                         data[0], data[1], data[2]
878                         );
879                 // [EBP] = old EBP
880                 // [EBP+0x04] = Return Addr
881                 // [EBP+0x08] = Arg 1 (CPU Number)
882                 // [EBP+0x0C] = Arg 2 (Thread)
883                 // [EBP+0x10] = GS (start of tRegs)
884                 Log("  IRQ%i from %02x:%08x", regs->int_num regs->cs, regs->eip);
885         }
886         if( stack[1] == (Uint32)&scheduler_return )
887         #endif
888         {
889                 // Scheduled out
890                 Log("  At %04x:%08x", Thread->SavedState.UserCS, Thread->SavedState.UserEIP);
891                 return ;
892         }
893         
894         Log("  Just created (unknown %p)", Thread->SavedState.EIP);
895 }
896
897 void Proc_Reschedule(void)
898 {
899         tThread *nextthread, *curthread;
900          int    cpu = GetCPUNum();
901
902         // TODO: Wait for it?
903         if(IS_LOCKED(&glThreadListLock))        return;
904         
905         curthread = Proc_GetCurThread();
906
907         nextthread = Threads_GetNextToRun(cpu, curthread);
908
909         if(!nextthread)
910                 nextthread = gaCPUs[cpu].IdleThread;
911         if(!nextthread || nextthread == curthread)
912                 return ;
913
914         #if DEBUG_TRACE_SWITCH
915         LogF("\nSwitching to task %i, CR3 = 0x%x, EIP = %p, ESP = %p\n",
916                 nextthread->TID,
917                 nextthread->MemState.CR3,
918                 nextthread->SavedState.EIP,
919                 nextthread->SavedState.ESP
920                 );
921         #endif
922
923         // Update CPU state
924         gaCPUs[cpu].Current = nextthread;
925         gTSSs[cpu].ESP0 = nextthread->KernelStack-4;
926         __asm__ __volatile__("mov %0, %%db0\n\t" : : "r"(nextthread) );
927
928         SwitchTasks(
929                 nextthread->SavedState.ESP, &curthread->SavedState.ESP,
930                 nextthread->SavedState.EIP, &curthread->SavedState.EIP,
931                 nextthread->MemState.CR3
932                 );
933         return ;
934 }
935
936 /**
937  * \fn void Proc_Scheduler(int CPU)
938  * \brief Swap current thread and clears dead threads
939  */
940 void Proc_Scheduler(int CPU)
941 {
942         tThread *thread;
943         
944         // If the spinlock is set, let it complete
945         if(IS_LOCKED(&glThreadListLock))        return;
946         
947         // Get current thread
948         thread = gaCPUs[CPU].Current;
949         
950         if( thread )
951         {
952                 tRegs   *regs;
953                 Uint    ebp;
954                 // Reduce remaining quantum and continue timeslice if non-zero
955                 if( thread->Remaining-- )
956                         return;
957                 // Reset quantum for next call
958                 thread->Remaining = thread->Quantum;
959                 
960                 // TODO: Make this more stable somehow
961                 __asm__ __volatile__("mov %%ebp, %0" : "=r" (ebp));
962                 regs = (tRegs*)(ebp+(2+2)*4);   // EBP,Ret + CPU,CurThread
963                 thread->SavedState.UserCS = regs->cs;
964                 thread->SavedState.UserEIP = regs->eip;
965                 
966                 if(thread->bInstrTrace) {
967                         regs->eflags |= 0x100;  // Set TF
968                         Log("%p De-scheduled", thread);
969                 }
970                 else
971                         regs->eflags &= ~0x100; // Clear TF
972         }
973
974 #if 0
975         // TODO: Ack timer?
976         #if USE_MP
977         if( GetCPUNum() )
978                 gpMP_LocalAPIC->EOI.Val = 0;
979         else
980         #endif
981                 outb(0x20, 0x20);
982         __asm__ __volatile__ ("sti");
983         Proc_Reschedule();
984 #endif
985 }
986
987 // === EXPORTS ===
988 EXPORT(Proc_SpawnWorker);

UCC git Repository :: git.ucc.asn.au