More SMP Work, also changed the physical allocator to allocate downwards
[tpg/acess2.git] / Kernel / arch / x86 / proc.c
1 /*
2  * AcessOS Microkernel Version
3  * proc.c
4  */
5 #include <acess.h>
6 #include <proc.h>
7 #include <mm_virt.h>
8 #include <errno.h>
9 #if USE_MP
10 # include <mp.h>
11 #endif
12
13 // === FLAGS ===
14 #define DEBUG_TRACE_SWITCH      0
15
16 // === CONSTANTS ===
17 #define SWITCH_MAGIC    0xFFFACE55      // There is no code in this area
18 #define TIMER_DIVISOR   11931   //~100Hz
19
20 // === IMPORTS ===
21 extern tGDT     gGDT[];
22 extern void APStartup();        // 16-bit AP startup code
23 extern Uint     GetEIP();       // start.asm
24 extern Uint32   gaInitPageDir[1024];    // start.asm
25 extern void     Kernel_Stack_Top;
26 extern volatile int     giThreadListLock;
27 extern int      giNumCPUs;
28 extern int      giNextTID;
29 extern int      giTotalTickets;
30 extern int      giNumActiveThreads;
31 extern tThread  gThreadZero;
32 extern tThread  *gActiveThreads;
33 extern tThread  *gSleepingThreads;
34 extern tThread  *gDeleteThreads;
35 extern tThread  *Threads_GetNextToRun(int CPU);
36 extern void     Threads_Dump();
37 extern tThread  *Threads_CloneTCB(Uint *Err, Uint Flags);
38 extern void     Isr7();
39
40 // === PROTOTYPES ===
41 void    ArchThreads_Init();
42 #if USE_MP
43 void    MP_StartAP(int CPU);
44 void    MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode);
45 #endif
46 void    Proc_Start();
47 tThread *Proc_GetCurThread();
48 void    Proc_ChangeStack();
49  int    Proc_Clone(Uint *Err, Uint Flags);
50 void    Proc_Scheduler();
51
52 // === GLOBALS ===
53 // --- Multiprocessing ---
54 #if USE_MP
55 tMPInfo *gMPFloatPtr = NULL;
56 tIOAPIC *gpMP_LocalAPIC = NULL;
57 Uint8   gaAPIC_to_CPU[256] = {0};
58 tCPU    gaCPUs[MAX_CPUS];
59 #else
60 tThread *gCurrentThread = NULL;
61 #endif
62 #if USE_PAE
63 Uint32  *gPML4s[4] = NULL;
64 #endif
65 tTSS    *gTSSs = NULL;
66 tTSS    gTSS0 = {0};
67 // --- Error Recovery ---
68 char    gaDoubleFaultStack[1024];
69 tTSS    gDoubleFault_TSS = {
70         .ESP0 = (Uint)&gaDoubleFaultStack[1023],
71         .SS0 = 0x10,
72         .EIP = (Uint)Isr7
73 };
74
75 // === CODE ===
76 /**
77  * \fn void ArchThreads_Init()
78  * \brief Starts the process scheduler
79  */
80 void ArchThreads_Init()
81 {
82         Uint    pos = 0;
83         
84         #if USE_MP
85         tMPTable        *mptable;
86         
87         // Mark BSP as active
88         gaCPUs[0].State = 2;
89         
90         // -- Initialise Multiprocessing
91         // Find MP Floating Table
92         // - EBDA/Last 1Kib (640KiB)
93         for(pos = KERNEL_BASE|0x9F000; pos < (KERNEL_BASE|0xA0000); pos += 16) {
94                 if( *(Uint*)(pos) == MPPTR_IDENT ) {
95                         Log("Possible %p", pos);
96                         if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
97                         gMPFloatPtr = (void*)pos;
98                         break;
99                 }
100         }
101         // - Last KiB (512KiB base mem)
102         if(!gMPFloatPtr) {
103                 for(pos = KERNEL_BASE|0x7F000; pos < (KERNEL_BASE|0x80000); pos += 16) {
104                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
105                                 Log("Possible %p", pos);
106                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
107                                 gMPFloatPtr = (void*)pos;
108                                 break;
109                         }
110                 }
111         }
112         // - BIOS ROM
113         if(!gMPFloatPtr) {
114                 for(pos = KERNEL_BASE|0xE0000; pos < (KERNEL_BASE|0x100000); pos += 16) {
115                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
116                                 Log("Possible %p", pos);
117                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
118                                 gMPFloatPtr = (void*)pos;
119                                 break;
120                         }
121                 }
122         }
123         
124         // If the MP Table Exists, parse it
125         if(gMPFloatPtr)
126         {
127                  int    i;
128                 tMPTable_Ent    *ents;
129                 Log("gMPFloatPtr = %p", gMPFloatPtr);
130                 Log("*gMPFloatPtr = {");
131                 Log("\t.Sig = 0x%08x", gMPFloatPtr->Sig);
132                 Log("\t.MPConfig = 0x%08x", gMPFloatPtr->MPConfig);
133                 Log("\t.Length = 0x%02x", gMPFloatPtr->Length);
134                 Log("\t.Version = 0x%02x", gMPFloatPtr->Version);
135                 Log("\t.Checksum = 0x%02x", gMPFloatPtr->Checksum);
136                 Log("\t.Features = [0x%02x,0x%02x,0x%02x,0x%02x,0x%02x]",
137                         gMPFloatPtr->Features[0],       gMPFloatPtr->Features[1],
138                         gMPFloatPtr->Features[2],       gMPFloatPtr->Features[3],
139                         gMPFloatPtr->Features[4]
140                         );
141                 Log("}");
142                 
143                 mptable = (void*)( KERNEL_BASE|gMPFloatPtr->MPConfig );
144                 Log("mptable = %p", mptable);
145                 Log("*mptable = {");
146                 Log("\t.Sig = 0x%08x", mptable->Sig);
147                 Log("\t.BaseTableLength = 0x%04x", mptable->BaseTableLength);
148                 Log("\t.SpecRev = 0x%02x", mptable->SpecRev);
149                 Log("\t.Checksum = 0x%02x", mptable->Checksum);
150                 Log("\t.OEMID = '%8c'", mptable->OemID);
151                 Log("\t.ProductID = '%8c'", mptable->ProductID);
152                 Log("\t.OEMTablePtr = %p'", mptable->OEMTablePtr);
153                 Log("\t.OEMTableSize = 0x%04x", mptable->OEMTableSize);
154                 Log("\t.EntryCount = 0x%04x", mptable->EntryCount);
155                 Log("\t.LocalAPICMemMap = 0x%08x", mptable->LocalAPICMemMap);
156                 Log("\t.ExtendedTableLen = 0x%04x", mptable->ExtendedTableLen);
157                 Log("\t.ExtendedTableChecksum = 0x%02x", mptable->ExtendedTableChecksum);
158                 Log("}");
159                 
160                 gpMP_LocalAPIC = (void*)MM_MapHWPage(mptable->LocalAPICMemMap, 1);
161                 
162                 ents = mptable->Entries;
163                 giNumCPUs = 0;
164                 
165                 for( i = 0; i < mptable->EntryCount; i ++ )
166                 {
167                          int    entSize = 0;
168                         switch( ents->Type )
169                         {
170                         case 0: // Processor
171                                 entSize = 20;
172                                 Log("%i: Processor", i);
173                                 Log("\t.APICID = %i", ents->Proc.APICID);
174                                 Log("\t.APICVer = 0x%02x", ents->Proc.APICVer);
175                                 Log("\t.CPUFlags = 0x%02x", ents->Proc.CPUFlags);
176                                 Log("\t.CPUSignature = 0x%08x", ents->Proc.CPUSignature);
177                                 Log("\t.FeatureFlags = 0x%08x", ents->Proc.FeatureFlags);
178                                 
179                                 // Check if there is too many processors
180                                 if(giNumCPUs >= MAX_CPUS) {
181                                         giNumCPUs ++;   // If `giNumCPUs` > MAX_CPUS later, it will be clipped
182                                         break;
183                                 }
184                                 
185                                 // Initialise CPU Info
186                                 gaAPIC_to_CPU[ents->Proc.APICID] = giNumCPUs;
187                                 gaCPUs[giNumCPUs].APICID = ents->Proc.APICID;
188                                 gaCPUs[giNumCPUs].State = 0;
189                                 giNumCPUs ++;
190                                 
191                                 // Send IPI
192                                 MP_StartAP( giNumCPUs-1 );
193                                 
194                                 break;
195                         case 1: // Bus
196                                 entSize = 8;
197                                 Log("%i: Bus", i);
198                                 Log("\t.ID = %i", ents->Bus.ID);
199                                 Log("\t.TypeString = '%6c'", ents->Bus.TypeString);
200                                 break;
201                         case 2: // I/O APIC
202                                 entSize = 8;
203                                 Log("%i: I/O APIC", i);
204                                 Log("\t.ID = %i", ents->IOAPIC.ID);
205                                 Log("\t.Version = 0x%02x", ents->IOAPIC.Version);
206                                 Log("\t.Flags = 0x%02x", ents->IOAPIC.Flags);
207                                 Log("\t.Addr = 0x%08x", ents->IOAPIC.Addr);
208                                 break;
209                         case 3: // I/O Interrupt Assignment
210                                 entSize = 8;
211                                 Log("%i: I/O Interrupt Assignment", i);
212                                 Log("\t.IntType = %i", ents->IOInt.IntType);
213                                 Log("\t.Flags = 0x%04x", ents->IOInt.Flags);
214                                 Log("\t.SourceBusID = 0x%02x", ents->IOInt.SourceBusID);
215                                 Log("\t.SourceBusIRQ = 0x%02x", ents->IOInt.SourceBusIRQ);
216                                 Log("\t.DestAPICID = 0x%02x", ents->IOInt.DestAPICID);
217                                 Log("\t.DestAPICIRQ = 0x%02x", ents->IOInt.DestAPICIRQ);
218                                 break;
219                         case 4: // Local Interrupt Assignment
220                                 entSize = 8;
221                                 Log("%i: Local Interrupt Assignment", i);
222                                 Log("\t.IntType = %i", ents->LocalInt.IntType);
223                                 Log("\t.Flags = 0x%04x", ents->LocalInt.Flags);
224                                 Log("\t.SourceBusID = 0x%02x", ents->LocalInt.SourceBusID);
225                                 Log("\t.SourceBusIRQ = 0x%02x", ents->LocalInt.SourceBusIRQ);
226                                 Log("\t.DestLocalAPICID = 0x%02x", ents->LocalInt.DestLocalAPICID);
227                                 Log("\t.DestLocalAPICIRQ = 0x%02x", ents->LocalInt.DestLocalAPICIRQ);
228                                 break;
229                         default:
230                                 Log("%i: Unknown (%i)", i, ents->Type);
231                                 break;
232                         }
233                         ents = (void*)( (Uint)ents + entSize );
234                 }
235                 
236                 if( giNumCPUs > MAX_CPUS ) {
237                         Warning("Too many CPUs detected (%i), only using %i of them", giNumCPUs, MAX_CPUS);
238                 }
239                 
240                 Panic("Uh oh... MP Table Parsing is unimplemented\n");
241         }
242         else {
243                 Log("No MP Table was found, assuming uniprocessor\n");
244                 giNumCPUs = 1;
245                 gTSSs = &gTSS0;
246         }
247         #else
248         giNumCPUs = 1;
249         gTSSs = &gTSS0;
250         #endif
251         
252         // Initialise Double Fault TSS
253         /*
254         gGDT[5].LimitLow = sizeof(tTSS);
255         gGDT[5].LimitHi = 0;
256         gGDT[5].Access = 0x89;  // Type
257         gGDT[5].Flags = 0x4;
258         */
259         gGDT[5].BaseLow = (Uint)&gDoubleFault_TSS & 0xFFFF;
260         gGDT[5].BaseMid = (Uint)&gDoubleFault_TSS >> 16;
261         gGDT[5].BaseHi = (Uint)&gDoubleFault_TSS >> 24;
262         
263         #if USE_MP
264         // Initialise Normal TSS(s)
265         for(pos=0;pos<giNumCPUs;pos++)
266         {
267         #else
268         pos = 0;
269         #endif
270                 gTSSs[pos].SS0 = 0x10;
271                 gTSSs[pos].ESP0 = 0;    // Set properly by scheduler
272                 gGDT[6+pos].BaseLow = ((Uint)(&gTSSs[pos])) & 0xFFFF;
273                 gGDT[6+pos].BaseMid = ((Uint)(&gTSSs[pos])) >> 16;
274                 gGDT[6+pos].BaseHi = ((Uint)(&gTSSs[pos])) >> 24;
275         #if USE_MP
276         }
277         for(pos=0;pos<giNumCPUs;pos++) {
278         #endif
279                 __asm__ __volatile__ ("ltr %%ax"::"a"(0x30+pos*8));
280         #if USE_MP
281         }
282         #endif
283         
284         #if USE_MP
285         gaCPUs[0].Current = &gThreadZero;
286         #else
287         gCurrentThread = &gThreadZero;
288         #endif
289         
290         #if USE_PAE
291         gThreadZero.MemState.PDP[0] = 0;
292         gThreadZero.MemState.PDP[1] = 0;
293         gThreadZero.MemState.PDP[2] = 0;
294         #else
295         gThreadZero.MemState.CR3 = (Uint)gaInitPageDir - KERNEL_BASE;
296         #endif
297         
298         // Set timer frequency
299         outb(0x43, 0x34);       // Set Channel 0, Low/High, Rate Generator
300         outb(0x40, TIMER_DIVISOR&0xFF); // Low Byte of Divisor
301         outb(0x40, (TIMER_DIVISOR>>8)&0xFF);    // High Byte
302         
303         // Create Per-Process Data Block
304         MM_Allocate(MM_PPD_CFG);
305         
306         // Change Stacks
307         Proc_ChangeStack();
308 }
309
310 #if USE_MP
311 void MP_StartAP(int CPU)
312 {
313         Log("Starting AP %i (APIC %i)", CPU, gaCPUs[CPU].APICID);
314         // Set location of AP startup code and mark for a warm restart
315         *(Uint16*)(KERNEL_BASE|0x467) = (Uint)&APStartup - (KERNEL_BASE|0xFFFF0);
316         *(Uint16*)(KERNEL_BASE|0x469) = 0xFFFF;
317         outb(0x70, 0x0F);       outb(0x71, 0x0A);       // Warm Reset
318         MP_SendIPI(gaCPUs[CPU].APICID, 0, 5);
319 }
320
321 void MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode)
322 {
323         Uint32  addr = (Uint)gpMP_LocalAPIC + 0x20 + (APICID<<3);
324         
325         *(Uint32*)addr = ((DeliveryMode & 7) << 8) | (Vector & 0xFF);
326 }
327 #endif
328
329 /**
330  * \fn void Proc_Start()
331  * \brief Start process scheduler
332  */
333 void Proc_Start()
334 {
335         // Start Interrupts (and hence scheduler)
336         __asm__ __volatile__("sti");
337 }
338
339 /**
340  * \fn tThread *Proc_GetCurThread()
341  * \brief Gets the current thread
342  */
343 tThread *Proc_GetCurThread()
344 {
345         #if USE_MP
346         gpMP_LocalAPIC->Addr = 0;
347         return gaCPUs[ gaAPIC_to_CPU[gpMP_LocalAPIC->Value.Byte] ].Current;
348         #else
349         return gCurrentThread;
350         #endif
351 }
352
353 /**
354  * \fn void Proc_ChangeStack()
355  * \brief Swaps the current stack for a new one (in the proper stack reigon)
356  */
357 void Proc_ChangeStack()
358 {
359         Uint    esp, ebp;
360         Uint    tmpEbp, oldEsp;
361         Uint    curBase, newBase;
362
363         __asm__ __volatile__ ("mov %%esp, %0":"=r"(esp));
364         __asm__ __volatile__ ("mov %%ebp, %0":"=r"(ebp));
365
366         oldEsp = esp;
367
368         // Create new KStack
369         newBase = MM_NewKStack();
370         // Check for errors
371         if(newBase == 0) {
372                 Panic("What the?? Unable to allocate space for initial kernel stack");
373                 return;
374         }
375
376         curBase = (Uint)&Kernel_Stack_Top;
377         
378         LOG("curBase = 0x%x, newBase = 0x%x", curBase, newBase);
379
380         // Get ESP as a used size
381         esp = curBase - esp;
382         LOG("memcpy( %p, %p, 0x%x )", (void*)(newBase - esp), (void*)(curBase - esp), esp );
383         // Copy used stack
384         memcpy( (void*)(newBase - esp), (void*)(curBase - esp), esp );
385         // Get ESP as an offset in the new stack
386         esp = newBase - esp;
387         // Adjust EBP
388         ebp = newBase - (curBase - ebp);
389
390         // Repair EBPs & Stack Addresses
391         // Catches arguments also, but may trash stack-address-like values
392         for(tmpEbp = esp; tmpEbp < newBase; tmpEbp += 4)
393         {
394                 if(oldEsp < *(Uint*)tmpEbp && *(Uint*)tmpEbp < curBase)
395                         *(Uint*)tmpEbp += newBase - curBase;
396         }
397         
398         Proc_GetCurThread()->KernelStack = newBase;
399         
400         __asm__ __volatile__ ("mov %0, %%esp"::"r"(esp));
401         __asm__ __volatile__ ("mov %0, %%ebp"::"r"(ebp));
402 }
403
404 /**
405  * \fn int Proc_Clone(Uint *Err, Uint Flags)
406  * \brief Clone the current process
407  */
408 int Proc_Clone(Uint *Err, Uint Flags)
409 {
410         tThread *newThread;
411         tThread *cur = Proc_GetCurThread();
412         Uint    eip, esp, ebp;
413         
414         __asm__ __volatile__ ("mov %%esp, %0": "=r"(esp));
415         __asm__ __volatile__ ("mov %%ebp, %0": "=r"(ebp));
416         
417         newThread = Threads_CloneTCB(Err, Flags);
418         if(!newThread)  return -1;
419         
420         // Initialise Memory Space (New Addr space or kernel stack)
421         if(Flags & CLONE_VM) {
422                 newThread->MemState.CR3 = MM_Clone();
423                 newThread->KernelStack = cur->KernelStack;
424         } else {
425                 Uint    tmpEbp, oldEsp = esp;
426
427                 // Set CR3
428                 newThread->MemState.CR3 = cur->MemState.CR3;
429
430                 // Create new KStack
431                 newThread->KernelStack = MM_NewKStack();
432                 // Check for errors
433                 if(newThread->KernelStack == 0) {
434                         free(newThread);
435                         return -1;
436                 }
437
438                 // Get ESP as a used size
439                 esp = cur->KernelStack - esp;
440                 // Copy used stack
441                 memcpy( (void*)(newThread->KernelStack - esp), (void*)(cur->KernelStack - esp), esp );
442                 // Get ESP as an offset in the new stack
443                 esp = newThread->KernelStack - esp;
444                 // Adjust EBP
445                 ebp = newThread->KernelStack - (cur->KernelStack - ebp);
446
447                 // Repair EBPs & Stack Addresses
448                 // Catches arguments also, but may trash stack-address-like values
449                 for(tmpEbp = esp; tmpEbp < newThread->KernelStack; tmpEbp += 4)
450                 {
451                         if(oldEsp < *(Uint*)tmpEbp && *(Uint*)tmpEbp < cur->KernelStack)
452                                 *(Uint*)tmpEbp += newThread->KernelStack - cur->KernelStack;
453                 }
454         }
455         
456         // Save core machine state
457         newThread->SavedState.ESP = esp;
458         newThread->SavedState.EBP = ebp;
459         eip = GetEIP();
460         if(eip == SWITCH_MAGIC) {
461                 outb(0x20, 0x20);       // ACK Timer and return as child
462                 return 0;
463         }
464         
465         // Set EIP as parent
466         newThread->SavedState.EIP = eip;
467         
468         // Lock list and add to active
469         Threads_AddActive(newThread);
470         
471         return newThread->TID;
472 }
473
474 /**
475  * \fn int Proc_SpawnWorker()
476  * \brief Spawns a new worker thread
477  */
478 int Proc_SpawnWorker()
479 {
480         tThread *new, *cur;
481         Uint    eip, esp, ebp;
482         
483         cur = Proc_GetCurThread();
484         
485         // Create new thread
486         new = malloc( sizeof(tThread) );
487         if(!new) {
488                 Warning("Proc_SpawnWorker - Out of heap space!\n");
489                 return -1;
490         }
491         memcpy(new, &gThreadZero, sizeof(tThread));
492         // Set Thread ID
493         new->TID = giNextTID++;
494         // Create a new worker stack (in PID0's address space)
495         // The stack is relocated by this code
496         new->KernelStack = MM_NewWorkerStack();
497
498         // Get ESP and EBP based in the new stack
499         __asm__ __volatile__ ("mov %%esp, %0": "=r"(esp));
500         __asm__ __volatile__ ("mov %%ebp, %0": "=r"(ebp));
501         esp = new->KernelStack - (cur->KernelStack - esp);
502         ebp = new->KernelStack - (cur->KernelStack - ebp);      
503         
504         // Save core machine state
505         new->SavedState.ESP = esp;
506         new->SavedState.EBP = ebp;
507         eip = GetEIP();
508         if(eip == SWITCH_MAGIC) {
509                 outb(0x20, 0x20);       // ACK Timer and return as child
510                 return 0;
511         }
512         
513         // Set EIP as parent
514         new->SavedState.EIP = eip;
515         // Mark as active
516         new->Status = THREAD_STAT_ACTIVE;
517         Threads_AddActive( new );
518         
519         return new->TID;
520 }
521
522 /**
523  * \fn Uint Proc_MakeUserStack()
524  * \brief Creates a new user stack
525  */
526 Uint Proc_MakeUserStack()
527 {
528          int    i;
529         Uint    base = USER_STACK_TOP - USER_STACK_SZ;
530         
531         // Check Prospective Space
532         for( i = USER_STACK_SZ >> 12; i--; )
533                 if( MM_GetPhysAddr( base + (i<<12) ) != 0 )
534                         break;
535         
536         if(i != -1)     return 0;
537         
538         // Allocate Stack - Allocate incrementally to clean up MM_Dump output
539         for( i = 0; i < USER_STACK_SZ/4069; i++ )
540                 MM_Allocate( base + (i<<12) );
541         
542         return base + USER_STACK_SZ;
543 }
544
545
546 /**
547  * \fn void Proc_StartUser(Uint Entrypoint, Uint *Bases, int ArgC, char **ArgV, char **EnvP, int DataSize)
548  * \brief Starts a user task
549  */
550 void Proc_StartUser(Uint Entrypoint, Uint *Bases, int ArgC, char **ArgV, char **EnvP, int DataSize)
551 {
552         Uint    *stack = (void*)Proc_MakeUserStack();
553          int    i;
554         Uint    delta;
555         Uint16  ss, cs;
556         
557         LOG("stack = 0x%x", stack);
558         
559         // Copy Arguments
560         stack = (void*)( (Uint)stack - DataSize );
561         memcpy( stack, ArgV, DataSize );
562         
563         // Adjust Arguments and environment
564         delta = (Uint)stack - (Uint)ArgV;
565         ArgV = (char**)stack;
566         for( i = 0; ArgV[i]; i++ )      ArgV[i] += delta;
567         i ++;
568         EnvP = &ArgV[i];
569         for( i = 0; EnvP[i]; i++ )      EnvP[i] += delta;
570         
571         // User Mode Segments
572         ss = 0x23;      cs = 0x1B;
573         
574         // Arguments
575         *--stack = (Uint)EnvP;
576         *--stack = (Uint)ArgV;
577         *--stack = (Uint)ArgC;
578         while(*Bases)
579                 *--stack = *Bases++;
580         *--stack = 0;   // Return Address
581         delta = (Uint)stack;    // Reuse delta to save SP
582         
583         *--stack = ss;          //Stack Segment
584         *--stack = delta;       //Stack Pointer
585         *--stack = 0x0202;      //EFLAGS (Resvd (0x2) and IF (0x20))
586         *--stack = cs;          //Code Segment
587         *--stack = Entrypoint;  //EIP
588         //PUSHAD
589         *--stack = 0xAAAAAAAA;  // eax
590         *--stack = 0xCCCCCCCC;  // ecx
591         *--stack = 0xDDDDDDDD;  // edx
592         *--stack = 0xBBBBBBBB;  // ebx
593         *--stack = 0xD1D1D1D1;  // edi
594         *--stack = 0x54545454;  // esp - NOT POPED
595         *--stack = 0x51515151;  // esi
596         *--stack = 0xB4B4B4B4;  // ebp
597         //Individual PUSHs
598         *--stack = ss;  // ds
599         *--stack = ss;  // es
600         *--stack = ss;  // fs
601         *--stack = ss;  // gs
602         
603         __asm__ __volatile__ (
604         "mov %%eax,%%esp;\n\t"  // Set stack pointer
605         "pop %%gs;\n\t"
606         "pop %%fs;\n\t"
607         "pop %%es;\n\t"
608         "pop %%ds;\n\t"
609         "popa;\n\t"
610         "iret;\n\t" : : "a" (stack));
611         for(;;);
612 }
613
614 /**
615  * \fn int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
616  * \brief Demotes a process to a lower permission level
617  * \param Err   Pointer to user's errno
618  * \param Dest  New Permission Level
619  * \param Regs  Pointer to user's register structure
620  */
621 int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
622 {
623          int    cpl = Regs->cs & 3;
624         // Sanity Check
625         if(Dest > 3 || Dest < 0) {
626                 *Err = -EINVAL;
627                 return -1;
628         }
629         
630         // Permission Check
631         if(cpl > Dest) {
632                 *Err = -EACCES;
633                 return -1;
634         }
635         
636         // Change the Segment Registers
637         Regs->cs = (((Dest+1)<<4) | Dest) - 8;
638         Regs->ss = ((Dest+1)<<4) | Dest;
639         // Check if the GP Segs are GDT, then change them
640         if(!(Regs->ds & 4))     Regs->ds = ((Dest+1)<<4) | Dest;
641         if(!(Regs->es & 4))     Regs->es = ((Dest+1)<<4) | Dest;
642         if(!(Regs->fs & 4))     Regs->fs = ((Dest+1)<<4) | Dest;
643         if(!(Regs->gs & 4))     Regs->gs = ((Dest+1)<<4) | Dest;
644         
645         return 0;
646 }
647
648 /**
649  * \fn void Proc_Scheduler(int CPU)
650  * \brief Swap current thread and clears dead threads
651  */
652 void Proc_Scheduler(int CPU)
653 {
654         Uint    esp, ebp, eip;
655         tThread *thread;
656         
657         // If the spinlock is set, let it complete
658         if(giThreadListLock)    return;
659         
660         // Clear Delete Queue
661         while(gDeleteThreads)
662         {
663                 thread = gDeleteThreads->Next;
664                 if(gDeleteThreads->IsLocked) {  // Only free if structure is unused
665                         gDeleteThreads->Status = THREAD_STAT_NULL;
666                         free( gDeleteThreads );
667                 }
668                 gDeleteThreads = thread;
669         }
670         
671         // Check if there is any tasks running
672         if(giNumActiveThreads == 0) {
673                 Log("No Active threads, sleeping");
674                 __asm__ __volatile__ ("hlt");
675                 return;
676         }
677         
678         // Get current thread
679         #if USE_MP
680         thread = gaCPUs[CPU].Current;
681         #else
682         curThread = gCurrentThread;
683         #endif
684         
685         // Reduce remaining quantum and continue timeslice if non-zero
686         if(thread->Remaining--) return;
687         // Reset quantum for next call
688         thread->Remaining = thread->Quantum;
689         
690         // Get machine state
691         __asm__ __volatile__ ("mov %%esp, %0":"=r"(esp));
692         __asm__ __volatile__ ("mov %%ebp, %0":"=r"(ebp));
693         eip = GetEIP();
694         if(eip == SWITCH_MAGIC) return; // Check if a switch happened
695         
696         // Save machine state
697         thread->SavedState.ESP = esp;
698         thread->SavedState.EBP = ebp;
699         thread->SavedState.EIP = eip;
700         
701         // Get next thread
702         thread = Threads_GetNextToRun(CPU);
703         
704         // Error Check
705         if(thread == NULL) {
706                 Warning("Hmm... Threads_GetNextToRun returned NULL, I don't think this should happen.\n");
707                 return;
708         }
709         
710         #if DEBUG_TRACE_SWITCH
711         Log("Switching to task %i, CR3 = 0x%x, EIP = %p",
712                 thread->TID,
713                 thread->MemState.CR3,
714                 thread->SavedState.EIP
715                 );
716         #endif
717         
718         // Set current thread
719         #if USE_MP
720         gaCPUs[CPU].Current = thread;
721         #else
722         gCurrentThread = thread;
723         #endif
724         
725         // Update Kernel Stack pointer
726         gTSSs[CPU].ESP0 = thread->KernelStack;
727         
728         // Set address space
729         #if USE_PAE
730         # error "Todo: Implement PAE Address space switching"
731         #else
732                 __asm__ __volatile__ ("mov %0, %%cr3"::"a"(thread->MemState.CR3));
733         #endif
734         // Switch threads
735         __asm__ __volatile__ (
736                 "mov %1, %%esp\n\t"     // Restore ESP
737                 "mov %2, %%ebp\n\t"     // and EBP
738                 "jmp *%3" : :   // And return to where we saved state (Proc_Clone or Proc_Scheduler)
739                 "a"(SWITCH_MAGIC), "b"(thread->SavedState.ESP),
740                 "d"(thread->SavedState.EBP), "c"(thread->SavedState.EIP)
741                 );
742         for(;;);        // Shouldn't reach here
743 }
744
745 // === EXPORTS ===
746 EXPORT(Proc_SpawnWorker);

UCC git Repository :: git.ucc.asn.au