Kernel/x86-smp - Fixing SMP support
[tpg/acess2.git] / KernelLand / Kernel / arch / x86 / proc.c
1 /*
2  * AcessOS Microkernel Version
3  * proc.c
4  */
5 #include <acess.h>
6 #include <threads.h>
7 #include <proc.h>
8 #include <desctab.h>
9 #include <mm_virt.h>
10 #include <errno.h>
11 #if USE_MP
12 # include <mp.h>
13 #endif
14 #include <hal_proc.h>
15 #include <arch_int.h>
16
17 // === FLAGS ===
18 #define DEBUG_TRACE_SWITCH      0
19 #define DEBUG_DISABLE_DOUBLEFAULT       1
20 #define DEBUG_VERY_SLOW_PERIOD  0
21 #define DEBUG_NOPREEMPT 1
22
23 // === CONSTANTS ===
24 // Base is 1193182
25 #define TIMER_BASE      1193182
26 #if DEBUG_VERY_SLOW_PERIOD
27 # define TIMER_DIVISOR  1193    //~10Hz switch, with 10 quantum = 1s per thread
28 #else
29 # define TIMER_DIVISOR  11932   //~100Hz
30 #endif
31
32 // === TYPES ===
33 typedef struct sCPU
34 {
35         Uint8   APICID;
36         Uint8   State;  // 0: Unavaliable, 1: Idle, 2: Active
37         Uint16  Resvd;
38         tThread *Current;
39         tThread *LastTimerThread;       // Used to do preeemption
40 }       tCPU;
41
42 // === IMPORTS ===
43 extern tGDT     gGDT[];
44 extern tIDT     gIDT[];
45 extern void     APWait(void);   // 16-bit AP pause code
46 extern void     APStartup(void);        // 16-bit AP startup code
47 extern Uint     GetEIP(void);   // start.asm
48 extern Uint     GetEIP_Sched(void);     // proc.asm
49 extern void     NewTaskHeader(tThread *Thread, void *Fcn, int nArgs, ...);      // Actually takes cdecl args
50 extern Uint     Proc_CloneInt(Uint *ESP, Uint32 *CR3, int bNoUserClone);
51 extern Uint32   gaInitPageDir[1024];    // start.asm
52 extern char     Kernel_Stack_Top[];
53 extern int      giNumCPUs;
54 extern int      giNextTID;
55 extern tThread  gThreadZero;
56 extern tProcess gProcessZero;
57 extern void     Isr8(void);     // Double Fault
58 extern void     Proc_ReturnToUser(tVAddr Handler, Uint Argument, tVAddr KernelStack);
59 extern char     scheduler_return[];     // Return address in SchedulerBase
60 extern char     IRQCommon[];    // Common IRQ handler code
61 extern char     IRQCommon_handled[];    // IRQCommon call return location
62 extern char     GetEIP_Sched_ret[];     // GetEIP call return location
63 extern void     SwitchTasks(Uint NewSP, Uint *OldSP, Uint NewIP, Uint *OldIO, Uint CR3);
64 extern void     Proc_InitialiseSSE(void);
65 extern void     Proc_SaveSSE(Uint DestPtr);
66 extern void     Proc_DisableSSE(void);
67
68 // === PROTOTYPES ===
69 //void  ArchThreads_Init(void);
70 #if USE_MP
71 void    MP_StartAP(int CPU);
72 void    MP_SendIPIVector(int CPU, Uint8 Vector);
73 void    MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode);
74 #endif
75 void    Proc_IdleThread(void *Ptr);
76 //void  Proc_Start(void);
77 //tThread       *Proc_GetCurThread(void);
78 void    Proc_ChangeStack(void);
79 // int  Proc_NewKThread(void (*Fcn)(void*), void *Data);
80 // int  Proc_Clone(Uint *Err, Uint Flags);
81 Uint    Proc_MakeUserStack(void);
82 //void  Proc_StartUser(Uint Entrypoint, Uint *Bases, int ArgC, char **ArgV, char **EnvP, int DataSize);
83 void    Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP) NORETURN;
84  int    Proc_Demote(Uint *Err, int Dest, tRegs *Regs);
85 //void  Proc_CallFaultHandler(tThread *Thread);
86 //void  Proc_DumpThreadCPUState(tThread *Thread);
87 void    Proc_Scheduler(int CPU);
88
89 // === GLOBALS ===
90 // --- Multiprocessing ---
91 #if USE_MP
92 volatile int    giNumInitingCPUs = 0;
93 tMPInfo *gMPFloatPtr = NULL;
94 volatile Uint32 giMP_TimerCount;        // Start Count for Local APIC Timer
95 tAPIC   *gpMP_LocalAPIC = NULL;
96 Uint8   gaAPIC_to_CPU[256] = {0};
97  int    giProc_BootProcessorID = 0;
98 tTSS    gaTSSs[MAX_CPUS];       // TSS Array
99 #endif
100 tCPU    gaCPUs[MAX_CPUS] = {
101         {.Current = &gThreadZero}
102         };
103 tTSS    *gTSSs = NULL;  // Pointer to TSS array
104 tTSS    gTSS0 = {0};
105 // --- Error Recovery ---
106 char    gaDoubleFaultStack[1024] __attribute__ ((section(".padata")));
107 tTSS    gDoubleFault_TSS = {
108         .ESP0 = (Uint)&gaDoubleFaultStack[1024],
109         .SS0 = 0x10,
110         .CR3 = (Uint)gaInitPageDir - KERNEL_BASE,
111         .EIP = (Uint)Isr8,
112         .ESP = (Uint)&gaDoubleFaultStack[1024],
113         .CS = 0x08,     .SS = 0x10,
114         .DS = 0x10,     .ES = 0x10,
115         .FS = 0x10,     .GS = 0x10,
116 };
117
118 // === CODE ===
119 /**
120  * \fn void ArchThreads_Init(void)
121  * \brief Starts the process scheduler
122  */
123 void ArchThreads_Init(void)
124 {
125         Uint    pos = 0;
126         
127         #if USE_MP
128         tMPTable        *mptable;
129         
130         // Mark BSP as active
131         gaCPUs[0].State = 2;
132         
133         // -- Initialise Multiprocessing
134         // Find MP Floating Table
135         // - EBDA/Last 1Kib (640KiB)
136         for(pos = KERNEL_BASE|0x9F000; pos < (KERNEL_BASE|0xA0000); pos += 16) {
137                 if( *(Uint*)(pos) == MPPTR_IDENT ) {
138                         Log("Possible %p", pos);
139                         if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
140                         gMPFloatPtr = (void*)pos;
141                         break;
142                 }
143         }
144         // - Last KiB (512KiB base mem)
145         if(!gMPFloatPtr) {
146                 for(pos = KERNEL_BASE|0x7F000; pos < (KERNEL_BASE|0x80000); pos += 16) {
147                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
148                                 Log("Possible %p", pos);
149                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
150                                 gMPFloatPtr = (void*)pos;
151                                 break;
152                         }
153                 }
154         }
155         // - BIOS ROM
156         if(!gMPFloatPtr) {
157                 for(pos = KERNEL_BASE|0xE0000; pos < (KERNEL_BASE|0x100000); pos += 16) {
158                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
159                                 Log("Possible %p", pos);
160                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
161                                 gMPFloatPtr = (void*)pos;
162                                 break;
163                         }
164                 }
165         }
166         
167         // If the MP Table Exists, parse it
168         if(gMPFloatPtr)
169         {
170                  int    i;
171                 tMPTable_Ent    *ents;
172                 #if DUMP_MP_TABLE
173                 Log("gMPFloatPtr = %p", gMPFloatPtr);
174                 Log("*gMPFloatPtr = {");
175                 Log("\t.Sig = 0x%08x", gMPFloatPtr->Sig);
176                 Log("\t.MPConfig = 0x%08x", gMPFloatPtr->MPConfig);
177                 Log("\t.Length = 0x%02x", gMPFloatPtr->Length);
178                 Log("\t.Version = 0x%02x", gMPFloatPtr->Version);
179                 Log("\t.Checksum = 0x%02x", gMPFloatPtr->Checksum);
180                 Log("\t.Features = [0x%02x,0x%02x,0x%02x,0x%02x,0x%02x]",
181                         gMPFloatPtr->Features[0],       gMPFloatPtr->Features[1],
182                         gMPFloatPtr->Features[2],       gMPFloatPtr->Features[3],
183                         gMPFloatPtr->Features[4]
184                         );
185                 Log("}");
186                 #endif          
187
188                 mptable = (void*)( KERNEL_BASE|gMPFloatPtr->MPConfig );
189                 #if DUMP_MP_TABLE
190                 Log("mptable = %p", mptable);
191                 Log("*mptable = {");
192                 Log("\t.Sig = 0x%08x", mptable->Sig);
193                 Log("\t.BaseTableLength = 0x%04x", mptable->BaseTableLength);
194                 Log("\t.SpecRev = 0x%02x", mptable->SpecRev);
195                 Log("\t.Checksum = 0x%02x", mptable->Checksum);
196                 Log("\t.OEMID = '%8c'", mptable->OemID);
197                 Log("\t.ProductID = '%8c'", mptable->ProductID);
198                 Log("\t.OEMTablePtr = %p'", mptable->OEMTablePtr);
199                 Log("\t.OEMTableSize = 0x%04x", mptable->OEMTableSize);
200                 Log("\t.EntryCount = 0x%04x", mptable->EntryCount);
201                 Log("\t.LocalAPICMemMap = 0x%08x", mptable->LocalAPICMemMap);
202                 Log("\t.ExtendedTableLen = 0x%04x", mptable->ExtendedTableLen);
203                 Log("\t.ExtendedTableChecksum = 0x%02x", mptable->ExtendedTableChecksum);
204                 Log("}");
205                 #endif
206                 
207                 gpMP_LocalAPIC = (void*)MM_MapHWPages(mptable->LocalAPICMemMap, 1);
208                 
209                 ents = mptable->Entries;
210                 giNumCPUs = 0;
211                 
212                 for( i = 0; i < mptable->EntryCount; i ++ )
213                 {
214                          int    entSize = 0;
215                         switch( ents->Type )
216                         {
217                         case 0: // Processor
218                                 entSize = 20;
219                                 #if DUMP_MP_TABLE
220                                 Log("%i: Processor", i);
221                                 Log("\t.APICID = %i", ents->Proc.APICID);
222                                 Log("\t.APICVer = 0x%02x", ents->Proc.APICVer);
223                                 Log("\t.CPUFlags = 0x%02x", ents->Proc.CPUFlags);
224                                 Log("\t.CPUSignature = 0x%08x", ents->Proc.CPUSignature);
225                                 Log("\t.FeatureFlags = 0x%08x", ents->Proc.FeatureFlags);
226                                 #endif
227                                 
228                                 if( !(ents->Proc.CPUFlags & 1) ) {
229                                         Log("DISABLED");
230                                         break;
231                                 }
232                                 
233                                 // Check if there is too many processors
234                                 if(giNumCPUs >= MAX_CPUS) {
235                                         giNumCPUs ++;   // If `giNumCPUs` > MAX_CPUS later, it will be clipped
236                                         break;
237                                 }
238                                 
239                                 // Initialise CPU Info
240                                 gaAPIC_to_CPU[ents->Proc.APICID] = giNumCPUs;
241                                 gaCPUs[giNumCPUs].APICID = ents->Proc.APICID;
242                                 gaCPUs[giNumCPUs].State = 0;
243                                 giNumCPUs ++;
244                                 
245                                 // Set BSP Variable
246                                 if( ents->Proc.CPUFlags & 2 ) {
247                                         giProc_BootProcessorID = giNumCPUs-1;
248                                 }
249                                 
250                                 break;
251                         
252                         #if DUMP_MP_TABLE >= 2
253                         case 1: // Bus
254                                 entSize = 8;
255                                 Log("%i: Bus", i);
256                                 Log("\t.ID = %i", ents->Bus.ID);
257                                 Log("\t.TypeString = '%6C'", ents->Bus.TypeString);
258                                 break;
259                         case 2: // I/O APIC
260                                 entSize = 8;
261                                 Log("%i: I/O APIC", i);
262                                 Log("\t.ID = %i", ents->IOAPIC.ID);
263                                 Log("\t.Version = 0x%02x", ents->IOAPIC.Version);
264                                 Log("\t.Flags = 0x%02x", ents->IOAPIC.Flags);
265                                 Log("\t.Addr = 0x%08x", ents->IOAPIC.Addr);
266                                 break;
267                         case 3: // I/O Interrupt Assignment
268                                 entSize = 8;
269                                 Log("%i: I/O Interrupt Assignment", i);
270                                 Log("\t.IntType = %i", ents->IOInt.IntType);
271                                 Log("\t.Flags = 0x%04x", ents->IOInt.Flags);
272                                 Log("\t.SourceBusID = 0x%02x", ents->IOInt.SourceBusID);
273                                 Log("\t.SourceBusIRQ = 0x%02x", ents->IOInt.SourceBusIRQ);
274                                 Log("\t.DestAPICID = 0x%02x", ents->IOInt.DestAPICID);
275                                 Log("\t.DestAPICIRQ = 0x%02x", ents->IOInt.DestAPICIRQ);
276                                 break;
277                         case 4: // Local Interrupt Assignment
278                                 entSize = 8;
279                                 Log("%i: Local Interrupt Assignment", i);
280                                 Log("\t.IntType = %i", ents->LocalInt.IntType);
281                                 Log("\t.Flags = 0x%04x", ents->LocalInt.Flags);
282                                 Log("\t.SourceBusID = 0x%02x", ents->LocalInt.SourceBusID);
283                                 Log("\t.SourceBusIRQ = 0x%02x", ents->LocalInt.SourceBusIRQ);
284                                 Log("\t.DestLocalAPICID = 0x%02x", ents->LocalInt.DestLocalAPICID);
285                                 Log("\t.DestLocalAPICIRQ = 0x%02x", ents->LocalInt.DestLocalAPICIRQ);
286                                 break;
287                         default:
288                                 Log("%i: Unknown (%i)", i, ents->Type);
289                                 break;
290                         #endif
291                         }
292                         ents = (void*)( (Uint)ents + entSize );
293                 }
294                 
295                 if( giNumCPUs > MAX_CPUS ) {
296                         Warning("Too many CPUs detected (%i), only using %i of them", giNumCPUs, MAX_CPUS);
297                         giNumCPUs = MAX_CPUS;
298                 }
299                 gTSSs = gaTSSs;
300         }
301         else {
302                 Log("No MP Table was found, assuming uniprocessor\n");
303                 giNumCPUs = 1;
304                 gTSSs = &gTSS0;
305         }
306         #else
307         giNumCPUs = 1;
308         gTSSs = &gTSS0;
309         #endif
310         
311         #if !DEBUG_DISABLE_DOUBLEFAULT
312         // Initialise Double Fault TSS
313         gGDT[5].BaseLow = (Uint)&gDoubleFault_TSS & 0xFFFF;
314         gGDT[5].BaseMid = (Uint)&gDoubleFault_TSS >> 16;
315         gGDT[5].BaseHi = (Uint)&gDoubleFault_TSS >> 24;
316         
317         // Set double fault IDT to use the new TSS
318         gIDT[8].OffsetLo = 0;
319         gIDT[8].CS = 5<<3;
320         gIDT[8].Flags = 0x8500;
321         gIDT[8].OffsetHi = 0;
322         #endif
323         
324         // Set timer frequency
325         outb(0x43, 0x34);       // Set Channel 0, Low/High, Rate Generator
326         outb(0x40, TIMER_DIVISOR&0xFF); // Low Byte of Divisor
327         outb(0x40, (TIMER_DIVISOR>>8)&0xFF);    // High Byte
328         
329         Log_Debug("Proc", "PIT Frequency %i.%03i Hz",
330                 TIMER_BASE/TIMER_DIVISOR,
331                 ((Uint64)TIMER_BASE*1000/TIMER_DIVISOR)%1000
332                 );
333         
334         #if USE_MP
335         // Get the count setting for APIC timer
336         Log("Determining APIC Count");
337         __asm__ __volatile__ ("sti");
338         while( giMP_TimerCount == 0 )   __asm__ __volatile__ ("hlt");
339         __asm__ __volatile__ ("cli");
340         Log("APIC Count %i", giMP_TimerCount);
341         {
342                 Uint64  freq = giMP_TimerCount;
343                 freq *= TIMER_BASE;
344                 freq /= TIMER_DIVISOR;
345                 if( (freq /= 1000) < 2*1000)
346                         Log("Bus Frequency %i KHz", freq);
347                 else if( (freq /= 1000) < 2*1000)
348                         Log("Bus Frequency %i MHz", freq);
349                 else if( (freq /= 1000) < 2*1000)
350                         Log("Bus Frequency %i GHz", freq);
351                 else
352                         Log("Bus Frequency %i THz", freq);
353         }
354         
355         // Initialise Normal TSS(s)
356         for(pos=0;pos<giNumCPUs;pos++)
357         {
358         #else
359         pos = 0;
360         #endif
361                 gTSSs[pos].SS0 = 0x10;
362                 gTSSs[pos].ESP0 = 0;    // Set properly by scheduler
363                 gGDT[6+pos].BaseLow = ((Uint)(&gTSSs[pos])) & 0xFFFF;
364                 gGDT[6+pos].BaseMid = ((Uint)(&gTSSs[pos]) >> 16) & 0xFFFF;
365                 gGDT[6+pos].BaseHi = ((Uint)(&gTSSs[pos])) >> 24;
366         #if USE_MP
367         }
368         #endif
369         
370         // Load the BSP's TSS
371         __asm__ __volatile__ ("ltr %%ax"::"a"(0x30));
372         // Set Current Thread and CPU Number in DR0 and DR1
373         __asm__ __volatile__ ("mov %0, %%db0"::"r"(&gThreadZero));
374         __asm__ __volatile__ ("mov %0, %%db1"::"r"(0));
375         
376         gaCPUs[0].Current = &gThreadZero;
377         gThreadZero.CurCPU = 0;
378         
379         gProcessZero.MemState.CR3 = (Uint)gaInitPageDir - KERNEL_BASE;
380         
381         // Create Per-Process Data Block
382         if( !MM_Allocate(MM_PPD_CFG) )
383         {
384                 Panic("OOM - No space for initial Per-Process Config");
385         }
386
387         // Initialise SSE support
388         Proc_InitialiseSSE();
389         
390         // Change Stacks
391         Proc_ChangeStack();
392 }
393
394 #if USE_MP
395 /**
396  * \brief Start an AP
397  */
398 void MP_StartAP(int CPU)
399 {
400         Log_Log("Proc", "Starting AP %i (APIC %i)", CPU, gaCPUs[CPU].APICID);
401         
402         // Set location of AP startup code and mark for a warm restart
403         *(Uint16*)(KERNEL_BASE|0x467) = (Uint)&APWait - (KERNEL_BASE|0xFFFF0);
404         *(Uint16*)(KERNEL_BASE|0x469) = 0xFFFF;
405         outb(0x70, 0x0F);       outb(0x71, 0x0A);       // Set warm reset flag
406         MP_SendIPI(gaCPUs[CPU].APICID, 0, 5);   // Init IPI
407
408         // Take a quick nap (20ms)
409         Time_Delay(20);
410
411         // TODO: Use a better address, preferably registered with the MM
412         // - MM_AllocDMA mabye?
413         // Create a far jump
414         *(Uint8*)(KERNEL_BASE|0x11000) = 0xEA;  // Far JMP
415         *(Uint16*)(KERNEL_BASE|0x11001) = (Uint16)&APStartup + 0x10;    // IP
416         *(Uint16*)(KERNEL_BASE|0x11003) = 0xFFFF;       // CS
417         
418         giNumInitingCPUs ++;
419         
420         // Send a Startup-IPI to make the CPU execute at 0x11000 (which we
421         // just filled)
422         MP_SendIPI(gaCPUs[CPU].APICID, 0x11, 6);        // StartupIPI
423         
424         tTime   timeout = now() + 2;
425         while( giNumInitingCPUs && now() > timeout )
426                 HALT();
427         
428         if( giNumInitingCPUs == 0 )
429                 return ;
430         
431         // First S-IPI failed, send again
432         MP_SendIPI(gaCPUs[CPU].APICID, 0x11, 6);
433         timeout = now() + 2;
434         while( giNumInitingCPUs && now() > timeout )
435                 HALT();
436         if( giNumInitingCPUs == 0 )
437                 return ;
438
439         Log_Notice("Proc", "CPU %i (APIC %x) didn't come up", CPU, gaCPUs[CPU].APICID); 
440
441         // Oh dammit.
442         giNumInitingCPUs = 0;
443 }
444
445 void MP_SendIPIVector(int CPU, Uint8 Vector)
446 {
447         MP_SendIPI(gaCPUs[CPU].APICID, Vector, 0);
448 }
449
450 /**
451  * \brief Send an Inter-Processor Interrupt
452  * \param APICID        Processor's Local APIC ID
453  * \param Vector        Argument of some kind
454  * \param DeliveryMode  Type of signal
455  * \note 3A 10.5 "APIC/Handling Local Interrupts"
456  */
457 void MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode)
458 {
459         Uint32  val;
460         
461         // Hi
462         val = (Uint)APICID << 24;
463         gpMP_LocalAPIC->ICR[1].Val = val;
464         // Low (and send)
465         val = ((DeliveryMode & 7) << 8) | (Vector & 0xFF);
466         gpMP_LocalAPIC->ICR[0].Val = val;
467 }
468 #endif
469
470 void Proc_IdleThread(void *Ptr)
471 {
472         tCPU    *cpu = &gaCPUs[GetCPUNum()];
473         cpu->Current->ThreadName = strdup("Idle Thread");
474         Threads_SetPriority( cpu->Current, -1 );        // Never called randomly
475         cpu->Current->Quantum = 1;      // 1 slice quantum
476         for(;;) {
477                 __asm__ __volatile__ ("sti");   // Make sure interrupts are enabled
478                 __asm__ __volatile__ ("hlt");   // Make sure interrupts are enabled
479                 Proc_Reschedule();
480         }
481 }
482
483 /**
484  * \fn void Proc_Start(void)
485  * \brief Start process scheduler
486  */
487 void Proc_Start(void)
488 {
489         #if USE_MP
490         // BSP still should run the current task
491         gaCPUs[giProc_BootProcessorID].Current = &gThreadZero;
492         
493         __asm__ __volatile__ ("sti");
494         
495         // Start APs
496         for( int i = 0; i < giNumCPUs; i ++ )
497         {
498                 if(i != giProc_BootProcessorID)
499                         gaCPUs[i].Current = NULL;
500
501                 // Create Idle Task
502                 Proc_NewKThread(Proc_IdleThread, &gaCPUs[i]);
503                 
504                 // Start the AP
505                 if( i != giProc_BootProcessorID ) {
506                         MP_StartAP( i );
507                 }
508         }
509         #else
510         // Create Idle Task
511         Proc_NewKThread(Proc_IdleThread, &gaCPUs[0]);
512         
513         // Set current task
514         gaCPUs[0].Current = &gThreadZero;
515
516         // Start Interrupts (and hence scheduler)
517         __asm__ __volatile__("sti");
518         #endif
519         MM_FinishVirtualInit();
520 }
521
522 /**
523  * \fn tThread *Proc_GetCurThread(void)
524  * \brief Gets the current thread
525  */
526 tThread *Proc_GetCurThread(void)
527 {
528         #if USE_MP
529         return gaCPUs[ GetCPUNum() ].Current;
530         #else
531         return gaCPUs[ 0 ].Current;
532         #endif
533 }
534
535 /**
536  * \fn void Proc_ChangeStack(void)
537  * \brief Swaps the current stack for a new one (in the proper stack reigon)
538  */
539 void Proc_ChangeStack(void)
540 {
541         Uint    esp, ebp;
542         Uint    tmpEbp, oldEsp;
543         Uint    curBase, newBase;
544
545         __asm__ __volatile__ ("mov %%esp, %0":"=r"(esp));
546         __asm__ __volatile__ ("mov %%ebp, %0":"=r"(ebp));
547
548         oldEsp = esp;
549
550         // Create new KStack
551         newBase = MM_NewKStack();
552         // Check for errors
553         if(newBase == 0) {
554                 Panic("What the?? Unable to allocate space for initial kernel stack");
555                 return;
556         }
557
558         curBase = (Uint)&Kernel_Stack_Top;
559         
560         LOG("curBase = 0x%x, newBase = 0x%x", curBase, newBase);
561
562         // Get ESP as a used size
563         esp = curBase - esp;
564         LOG("memcpy( %p, %p, 0x%x )", (void*)(newBase - esp), (void*)(curBase - esp), esp );
565         // Copy used stack
566         memcpy( (void*)(newBase - esp), (void*)(curBase - esp), esp );
567         // Get ESP as an offset in the new stack
568         esp = newBase - esp;
569         // Adjust EBP
570         ebp = newBase - (curBase - ebp);
571
572         // Repair EBPs & Stack Addresses
573         // Catches arguments also, but may trash stack-address-like values
574         for(tmpEbp = esp; tmpEbp < newBase; tmpEbp += 4)
575         {
576                 if(oldEsp < *(Uint*)tmpEbp && *(Uint*)tmpEbp < curBase)
577                         *(Uint*)tmpEbp += newBase - curBase;
578         }
579         
580         Proc_GetCurThread()->KernelStack = newBase;
581         
582         __asm__ __volatile__ ("mov %0, %%esp"::"r"(esp));
583         __asm__ __volatile__ ("mov %0, %%ebp"::"r"(ebp));
584 }
585
586 void Proc_ClearProcess(tProcess *Process)
587 {
588         MM_ClearSpace(Process->MemState.CR3);
589 }
590
591 void Proc_ClearThread(tThread *Thread)
592 {
593         if(Thread->SavedState.SSE) {
594                 free(Thread->SavedState.SSE);
595                 Thread->SavedState.SSE = NULL;
596         }
597 }
598
599 tTID Proc_NewKThread(void (*Fcn)(void*), void *Data)
600 {
601         Uint    esp;
602         tThread *newThread;
603         
604         newThread = Threads_CloneTCB(0);
605         if(!newThread)  return -1;
606         
607         // Create new KStack
608         newThread->KernelStack = MM_NewKStack();
609         // Check for errors
610         if(newThread->KernelStack == 0) {
611                 free(newThread);
612                 return -1;
613         }
614
615         esp = newThread->KernelStack;
616         *(Uint*)(esp-=4) = (Uint)Data;  // Data (shadowed)
617         *(Uint*)(esp-=4) = 1;   // Number of params
618         *(Uint*)(esp-=4) = (Uint)Fcn;   // Function to call
619         *(Uint*)(esp-=4) = (Uint)newThread;     // Thread ID
620         
621         newThread->SavedState.ESP = esp;
622         newThread->SavedState.EIP = (Uint)&NewTaskHeader;
623         newThread->SavedState.SSE = NULL;
624 //      Log("New (KThread) %p, esp = %p", newThread->SavedState.EIP, newThread->SavedState.ESP);
625         
626 //      MAGIC_BREAK();  
627         Threads_AddActive(newThread);
628
629         return newThread->TID;
630 }
631
632 /**
633  * \fn int Proc_Clone(Uint *Err, Uint Flags)
634  * \brief Clone the current process
635  */
636 tPID Proc_Clone(Uint Flags)
637 {
638         tThread *newThread;
639         tThread *cur = Proc_GetCurThread();
640         Uint    eip;
641
642         // Sanity, please
643         if( !(Flags & CLONE_VM) ) {
644                 Log_Error("Proc", "Proc_Clone: Don't leave CLONE_VM unset, use Proc_NewKThread instead");
645                 return -1;
646         }
647         
648         // New thread
649         newThread = Threads_CloneTCB(Flags);
650         if(!newThread)  return -1;
651
652         newThread->KernelStack = cur->KernelStack;
653
654         // Clone state
655         eip = Proc_CloneInt(&newThread->SavedState.ESP, &newThread->Process->MemState.CR3, Flags & CLONE_NOUSER);
656         if( eip == 0 ) {
657                 return 0;
658         }
659         newThread->SavedState.EIP = eip;
660         newThread->SavedState.SSE = NULL;
661         newThread->SavedState.bSSEModified = 0;
662         
663         // Check for errors
664         if( newThread->Process->MemState.CR3 == 0 ) {
665                 Log_Error("Proc", "Proc_Clone: MM_Clone failed");
666                 Threads_Delete(newThread);
667                 return -1;
668         }
669
670         // Add the new thread to the run queue
671         Threads_AddActive(newThread);
672         return newThread->TID;
673 }
674
675 /**
676  * \fn int Proc_SpawnWorker(void)
677  * \brief Spawns a new worker thread
678  */
679 tThread *Proc_SpawnWorker(void (*Fcn)(void*), void *Data)
680 {
681         tThread *new;
682         Uint    stack_contents[4];
683         
684         // Create new thread
685         new = Threads_CloneThreadZero();
686         if(!new) {
687                 Warning("Proc_SpawnWorker - Out of heap space!\n");
688                 return NULL;
689         }
690
691         // Create the stack contents
692         stack_contents[3] = (Uint)Data;
693         stack_contents[2] = 1;
694         stack_contents[1] = (Uint)Fcn;
695         stack_contents[0] = (Uint)new;
696         
697         // Create a new worker stack (in PID0's address space)
698         new->KernelStack = MM_NewWorkerStack(stack_contents, sizeof(stack_contents));
699
700         // Save core machine state
701         new->SavedState.ESP = new->KernelStack - sizeof(stack_contents);
702         new->SavedState.EIP = (Uint)NewTaskHeader;
703         new->SavedState.SSE = NULL;
704         new->SavedState.bSSEModified = 0;
705         
706         // Mark as active
707         new->Status = THREAD_STAT_PREINIT;
708         Threads_AddActive( new );
709         
710         return new;
711 }
712
713 /**
714  * \fn Uint Proc_MakeUserStack(void)
715  * \brief Creates a new user stack
716  */
717 Uint Proc_MakeUserStack(void)
718 {
719          int    i;
720         Uint    base = USER_STACK_TOP - USER_STACK_SZ;
721         
722         // Check Prospective Space
723         for( i = USER_STACK_SZ >> 12; i--; )
724                 if( MM_GetPhysAddr( (void*)(base + (i<<12)) ) != 0 )
725                         break;
726         
727         if(i != -1)     return 0;
728         
729         // Allocate Stack - Allocate incrementally to clean up MM_Dump output
730         for( i = 0; i < USER_STACK_SZ/0x1000; i++ )
731         {
732                 if( !MM_Allocate( base + (i<<12) ) )
733                 {
734                         Warning("OOM: Proc_MakeUserStack");
735                         return 0;
736                 }
737         }
738         
739         return base + USER_STACK_SZ;
740 }
741
742 void Proc_StartUser(Uint Entrypoint, Uint Base, int ArgC, const char **ArgV, int DataSize)
743 {
744         Uint    *stack;
745          int    i;
746         const char      **envp = NULL;
747         Uint16  ss, cs;
748         
749         // Copy data to the user stack and free original buffer
750         stack = (void*)Proc_MakeUserStack();
751         stack -= (DataSize+sizeof(*stack)-1)/sizeof(*stack);
752         memcpy( stack, ArgV, DataSize );
753         free(ArgV);
754         
755         // Adjust Arguments and environment
756         if( DataSize )
757         {
758                 Uint delta = (Uint)stack - (Uint)ArgV;
759                 ArgV = (const char**)stack;
760                 for( i = 0; ArgV[i]; i++ )      ArgV[i] += delta;
761                 envp = &ArgV[i+1];
762                 for( i = 0; envp[i]; i++ )      envp[i] += delta;
763         }
764         
765         // User Mode Segments
766         ss = 0x23;      cs = 0x1B;
767         
768         // Arguments
769         *--stack = (Uint)envp;
770         *--stack = (Uint)ArgV;
771         *--stack = (Uint)ArgC;
772         *--stack = Base;
773         
774         Proc_StartProcess(ss, (Uint)stack, 0x202, cs, Entrypoint);
775 }
776
777 void Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP)
778 {
779         Uint    *stack = (void*)Stack;
780         *--stack = SS;          //Stack Segment
781         *--stack = Stack;       //Stack Pointer
782         *--stack = Flags;       //EFLAGS (Resvd (0x2) and IF (0x20))
783         *--stack = CS;          //Code Segment
784         *--stack = IP;  //EIP
785         //PUSHAD
786         *--stack = 0xAAAAAAAA;  // eax
787         *--stack = 0xCCCCCCCC;  // ecx
788         *--stack = 0xDDDDDDDD;  // edx
789         *--stack = 0xBBBBBBBB;  // ebx
790         *--stack = 0xD1D1D1D1;  // edi
791         *--stack = 0x54545454;  // esp - NOT POPED
792         *--stack = 0x51515151;  // esi
793         *--stack = 0xB4B4B4B4;  // ebp
794         //Individual PUSHs
795         *--stack = SS;  // ds
796         *--stack = SS;  // es
797         *--stack = SS;  // fs
798         *--stack = SS;  // gs
799         
800         __asm__ __volatile__ (
801         "mov %%eax,%%esp;\n\t"  // Set stack pointer
802         "pop %%gs;\n\t"
803         "pop %%fs;\n\t"
804         "pop %%es;\n\t"
805         "pop %%ds;\n\t"
806         "popa;\n\t"
807         "iret;\n\t" : : "a" (stack));
808         for(;;);
809 }
810
811 /**
812  * \fn int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
813  * \brief Demotes a process to a lower permission level
814  * \param Err   Pointer to user's errno
815  * \param Dest  New Permission Level
816  * \param Regs  Pointer to user's register structure
817  */
818 int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
819 {
820          int    cpl = Regs->cs & 3;
821         // Sanity Check
822         if(Dest > 3 || Dest < 0) {
823                 *Err = -EINVAL;
824                 return -1;
825         }
826         
827         // Permission Check
828         if(cpl > Dest) {
829                 *Err = -EACCES;
830                 return -1;
831         }
832         
833         // Change the Segment Registers
834         Regs->cs = (((Dest+1)<<4) | Dest) - 8;
835         Regs->ss = ((Dest+1)<<4) | Dest;
836         // Check if the GP Segs are GDT, then change them
837         if(!(Regs->ds & 4))     Regs->ds = ((Dest+1)<<4) | Dest;
838         if(!(Regs->es & 4))     Regs->es = ((Dest+1)<<4) | Dest;
839         if(!(Regs->fs & 4))     Regs->fs = ((Dest+1)<<4) | Dest;
840         if(!(Regs->gs & 4))     Regs->gs = ((Dest+1)<<4) | Dest;
841         
842         return 0;
843 }
844
845 /**
846  * \brief Calls a signal handler in user mode
847  * \note Used for signals
848  */
849 void Proc_CallFaultHandler(tThread *Thread)
850 {
851         // Rewinds the stack and calls the user function
852         // Never returns
853         Proc_ReturnToUser( Thread->FaultHandler, Thread->CurFaultNum, Thread->KernelStack );
854         for(;;);
855 }
856
857 void Proc_DumpThreadCPUState(tThread *Thread)
858 {
859         if( Thread->CurCPU > -1 )
860         {
861                  int    maxBacktraceDistance = 6;
862                 tRegs   *regs = NULL;
863                 Uint32  *stack;
864                 
865                 if( Thread->CurCPU != GetCPUNum() ) {
866                         Log("  Currently running");
867                         return ;
868                 }
869                 
870                 // Backtrace to find the IRQ entrypoint
871                 // - This will usually only be called by an IRQ, so this should
872                 //   work
873                 __asm__ __volatile__ ("mov %%ebp, %0" : "=r" (stack));
874                 while( maxBacktraceDistance -- )
875                 {
876                         if( !CheckMem(stack, 8) ) {
877                                 regs = NULL;
878                                 break;
879                         }
880                         // [ebp] = oldEbp
881                         // [ebp+4] = retaddr
882                         
883                         if( stack[1] == (tVAddr)&IRQCommon_handled ) {
884                                 regs = (void*)stack[2];
885                                 break;
886                         }
887                         
888                         stack = (void*)stack[0];
889                 }
890                 
891                 if( !regs ) {
892                         Log("  Unable to find IRQ Entry");
893                         return ;
894                 }
895                 
896                 Log("  at %04x:%08x", regs->cs, regs->eip);
897                 return ;
898         }
899         
900         tVAddr  diffFromScheduler = Thread->SavedState.EIP - (tVAddr)SwitchTasks;
901         tVAddr  diffFromClone = Thread->SavedState.EIP - (tVAddr)Proc_CloneInt;
902         tVAddr  diffFromSpawn = Thread->SavedState.EIP - (tVAddr)NewTaskHeader;
903         
904         if( diffFromClone > 0 && diffFromClone < 40 )   // When I last checked, .newTask was at .+27
905         {
906                 Log("  Creating process");
907                 return ;
908         }
909         
910         if( diffFromSpawn == 0 )
911         {
912                 Log("  Creating thread");
913                 return ;
914         }
915         
916         if( diffFromScheduler > 0 && diffFromScheduler < 128 )  // When I last checked, GetEIP was at .+0x30
917         {
918                 // Scheduled out
919                 Log("  At %04x:%08x", Thread->SavedState.UserCS, Thread->SavedState.UserEIP);
920                 return ;
921         }
922         
923         Log("  Just created (unknown %p)", Thread->SavedState.EIP);
924 }
925
926 void Proc_Reschedule(void)
927 {
928         tThread *nextthread, *curthread;
929          int    cpu = GetCPUNum();
930
931         // TODO: Wait for the lock?
932         if(IS_LOCKED(&glThreadListLock))        return;
933         
934         curthread = Proc_GetCurThread();
935
936         nextthread = Threads_GetNextToRun(cpu, curthread);
937
938         if(!nextthread || nextthread == curthread)
939                 return ;
940
941         #if DEBUG_TRACE_SWITCH
942         // HACK: Ignores switches to the idle threads
943         if( nextthread->TID == 0 || nextthread->TID > giNumCPUs )
944         {
945                 LogF("\nSwitching CPU %i to %p (%i %s) - CR3 = 0x%x, EIP = %p, ESP = %p\n",
946                         GetCPUNum(),
947                         nextthread, nextthread->TID, nextthread->ThreadName,
948                         nextthread->Process->MemState.CR3,
949                         nextthread->SavedState.EIP,
950                         nextthread->SavedState.ESP
951                         );
952                 LogF("OldCR3 = %P\n", curthread->Process->MemState.CR3);
953         }
954         #endif
955
956         // Update CPU state
957         gaCPUs[cpu].Current = nextthread;
958         gaCPUs[cpu].LastTimerThread = NULL;
959         gTSSs[cpu].ESP0 = nextthread->KernelStack-4;
960         __asm__ __volatile__("mov %0, %%db0\n\t" : : "r"(nextthread) );
961
962         // Save FPU/MMX/XMM/SSE state
963         if( curthread && curthread->SavedState.SSE )
964         {
965                 Proc_SaveSSE( ((Uint)curthread->SavedState.SSE + 0xF) & ~0xF );
966                 curthread->SavedState.bSSEModified = 0;
967                 Proc_DisableSSE();
968         }
969
970         if( curthread )
971         {
972                 SwitchTasks(
973                         nextthread->SavedState.ESP, &curthread->SavedState.ESP,
974                         nextthread->SavedState.EIP, &curthread->SavedState.EIP,
975                         nextthread->Process->MemState.CR3
976                         );
977         }
978         else
979         {
980                 SwitchTasks(
981                         nextthread->SavedState.ESP, 0,
982                         nextthread->SavedState.EIP, 0,
983                         nextthread->Process->MemState.CR3
984                         );
985         }
986
987         return ;
988 }
989
990 /**
991  * \fn void Proc_Scheduler(int CPU)
992  * \brief Swap current thread and clears dead threads
993  */
994 void Proc_Scheduler(int CPU)
995 {
996         #if USE_MP
997         if( GetCPUNum() )
998                 gpMP_LocalAPIC->EOI.Val = 0;
999         else
1000         #endif
1001                 outb(0x20, 0x20);
1002         __asm__ __volatile__ ("sti");   
1003
1004         // Call the timer update code
1005         Timer_CallTimers();
1006
1007         #if !DEBUG_NOPREEMPT
1008         // If two ticks happen within the same task, and it's not an idle task, swap
1009         if( gaCPUs[CPU].Current->TID > giNumCPUs && gaCPUs[CPU].Current == gaCPUs[CPU].LastTimerThread )
1010         {
1011                 Proc_Reschedule();
1012         }
1013         
1014         gaCPUs[CPU].LastTimerThread = gaCPUs[CPU].Current;
1015         #endif
1016 }
1017
1018 // === EXPORTS ===
1019 EXPORT(Proc_SpawnWorker);

UCC git Repository :: git.ucc.asn.au