Sorting source tree a bit
[tpg/acess2.git] / KernelLand / Kernel / arch / x86 / proc.c
1 /*
2  * AcessOS Microkernel Version
3  * proc.c
4  */
5 #include <acess.h>
6 #include <threads.h>
7 #include <proc.h>
8 #include <desctab.h>
9 #include <mm_virt.h>
10 #include <errno.h>
11 #if USE_MP
12 # include <mp.h>
13 #endif
14 #include <hal_proc.h>
15 #include <arch_int.h>
16
17 // === FLAGS ===
18 #define DEBUG_TRACE_SWITCH      0
19 #define DEBUG_DISABLE_DOUBLEFAULT       1
20 #define DEBUG_VERY_SLOW_PERIOD  0
21
22 // === CONSTANTS ===
23 // Base is 1193182
24 #define TIMER_BASE      1193182
25 #if DEBUG_VERY_SLOW_PERIOD
26 # define TIMER_DIVISOR  1193    //~10Hz switch, with 10 quantum = 1s per thread
27 #else
28 # define TIMER_DIVISOR  11932   //~100Hz
29 #endif
30
31 // === TYPES ===
32 typedef struct sCPU
33 {
34         Uint8   APICID;
35         Uint8   State;  // 0: Unavaliable, 1: Idle, 2: Active
36         Uint16  Resvd;
37         tThread *Current;
38 }       tCPU;
39
40 // === IMPORTS ===
41 extern tGDT     gGDT[];
42 extern tIDT     gIDT[];
43 extern void     APWait(void);   // 16-bit AP pause code
44 extern void     APStartup(void);        // 16-bit AP startup code
45 extern Uint     GetEIP(void);   // start.asm
46 extern Uint     GetEIP_Sched(void);     // proc.asm
47 extern void     NewTaskHeader(tThread *Thread, void *Fcn, int nArgs, ...);      // Actually takes cdecl args
48 extern Uint     Proc_CloneInt(Uint *ESP, Uint32 *CR3, int bNoUserClone);
49 extern Uint32   gaInitPageDir[1024];    // start.asm
50 extern char     Kernel_Stack_Top[];
51 extern int      giNumCPUs;
52 extern int      giNextTID;
53 extern tThread  gThreadZero;
54 extern tProcess gProcessZero;
55 extern void     Isr8(void);     // Double Fault
56 extern void     Proc_ReturnToUser(tVAddr Handler, Uint Argument, tVAddr KernelStack);
57 extern char     scheduler_return[];     // Return address in SchedulerBase
58 extern char     IRQCommon[];    // Common IRQ handler code
59 extern char     IRQCommon_handled[];    // IRQCommon call return location
60 extern char     GetEIP_Sched_ret[];     // GetEIP call return location
61 extern void     SwitchTasks(Uint NewSP, Uint *OldSP, Uint NewIP, Uint *OldIO, Uint CR3);
62 extern void     Proc_InitialiseSSE(void);
63 extern void     Proc_SaveSSE(Uint DestPtr);
64 extern void     Proc_DisableSSE(void);
65
66 // === PROTOTYPES ===
67 //void  ArchThreads_Init(void);
68 #if USE_MP
69 void    MP_StartAP(int CPU);
70 void    MP_SendIPIVector(int CPU, Uint8 Vector);
71 void    MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode);
72 #endif
73 void    Proc_IdleThread(void *Ptr);
74 //void  Proc_Start(void);
75 //tThread       *Proc_GetCurThread(void);
76 void    Proc_ChangeStack(void);
77 // int  Proc_NewKThread(void (*Fcn)(void*), void *Data);
78 // int  Proc_Clone(Uint *Err, Uint Flags);
79 Uint    Proc_MakeUserStack(void);
80 //void  Proc_StartUser(Uint Entrypoint, Uint *Bases, int ArgC, char **ArgV, char **EnvP, int DataSize);
81 void    Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP) NORETURN;
82  int    Proc_Demote(Uint *Err, int Dest, tRegs *Regs);
83 //void  Proc_CallFaultHandler(tThread *Thread);
84 //void  Proc_DumpThreadCPUState(tThread *Thread);
85 void    Proc_Scheduler(int CPU);
86
87 // === GLOBALS ===
88 // --- Multiprocessing ---
89 #if USE_MP
90 volatile int    giNumInitingCPUs = 0;
91 tMPInfo *gMPFloatPtr = NULL;
92 volatile Uint32 giMP_TimerCount;        // Start Count for Local APIC Timer
93 tAPIC   *gpMP_LocalAPIC = NULL;
94 Uint8   gaAPIC_to_CPU[256] = {0};
95  int    giProc_BootProcessorID = 0;
96 tTSS    gaTSSs[MAX_CPUS];       // TSS Array
97 #endif
98 tCPU    gaCPUs[MAX_CPUS] = {
99         {.Current = &gThreadZero}
100         };
101 tTSS    *gTSSs = NULL;  // Pointer to TSS array
102 tTSS    gTSS0 = {0};
103 // --- Error Recovery ---
104 char    gaDoubleFaultStack[1024] __attribute__ ((section(".padata")));
105 tTSS    gDoubleFault_TSS = {
106         .ESP0 = (Uint)&gaDoubleFaultStack[1024],
107         .SS0 = 0x10,
108         .CR3 = (Uint)gaInitPageDir - KERNEL_BASE,
109         .EIP = (Uint)Isr8,
110         .ESP = (Uint)&gaDoubleFaultStack[1024],
111         .CS = 0x08,     .SS = 0x10,
112         .DS = 0x10,     .ES = 0x10,
113         .FS = 0x10,     .GS = 0x10,
114 };
115
116 // === CODE ===
117 /**
118  * \fn void ArchThreads_Init(void)
119  * \brief Starts the process scheduler
120  */
121 void ArchThreads_Init(void)
122 {
123         Uint    pos = 0;
124         
125         #if USE_MP
126         tMPTable        *mptable;
127         
128         // Mark BSP as active
129         gaCPUs[0].State = 2;
130         
131         // -- Initialise Multiprocessing
132         // Find MP Floating Table
133         // - EBDA/Last 1Kib (640KiB)
134         for(pos = KERNEL_BASE|0x9F000; pos < (KERNEL_BASE|0xA0000); pos += 16) {
135                 if( *(Uint*)(pos) == MPPTR_IDENT ) {
136                         Log("Possible %p", pos);
137                         if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
138                         gMPFloatPtr = (void*)pos;
139                         break;
140                 }
141         }
142         // - Last KiB (512KiB base mem)
143         if(!gMPFloatPtr) {
144                 for(pos = KERNEL_BASE|0x7F000; pos < (KERNEL_BASE|0x80000); pos += 16) {
145                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
146                                 Log("Possible %p", pos);
147                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
148                                 gMPFloatPtr = (void*)pos;
149                                 break;
150                         }
151                 }
152         }
153         // - BIOS ROM
154         if(!gMPFloatPtr) {
155                 for(pos = KERNEL_BASE|0xE0000; pos < (KERNEL_BASE|0x100000); pos += 16) {
156                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
157                                 Log("Possible %p", pos);
158                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
159                                 gMPFloatPtr = (void*)pos;
160                                 break;
161                         }
162                 }
163         }
164         
165         // If the MP Table Exists, parse it
166         if(gMPFloatPtr)
167         {
168                  int    i;
169                 tMPTable_Ent    *ents;
170                 #if DUMP_MP_TABLE
171                 Log("gMPFloatPtr = %p", gMPFloatPtr);
172                 Log("*gMPFloatPtr = {");
173                 Log("\t.Sig = 0x%08x", gMPFloatPtr->Sig);
174                 Log("\t.MPConfig = 0x%08x", gMPFloatPtr->MPConfig);
175                 Log("\t.Length = 0x%02x", gMPFloatPtr->Length);
176                 Log("\t.Version = 0x%02x", gMPFloatPtr->Version);
177                 Log("\t.Checksum = 0x%02x", gMPFloatPtr->Checksum);
178                 Log("\t.Features = [0x%02x,0x%02x,0x%02x,0x%02x,0x%02x]",
179                         gMPFloatPtr->Features[0],       gMPFloatPtr->Features[1],
180                         gMPFloatPtr->Features[2],       gMPFloatPtr->Features[3],
181                         gMPFloatPtr->Features[4]
182                         );
183                 Log("}");
184                 #endif          
185
186                 mptable = (void*)( KERNEL_BASE|gMPFloatPtr->MPConfig );
187                 #if DUMP_MP_TABLE
188                 Log("mptable = %p", mptable);
189                 Log("*mptable = {");
190                 Log("\t.Sig = 0x%08x", mptable->Sig);
191                 Log("\t.BaseTableLength = 0x%04x", mptable->BaseTableLength);
192                 Log("\t.SpecRev = 0x%02x", mptable->SpecRev);
193                 Log("\t.Checksum = 0x%02x", mptable->Checksum);
194                 Log("\t.OEMID = '%8c'", mptable->OemID);
195                 Log("\t.ProductID = '%8c'", mptable->ProductID);
196                 Log("\t.OEMTablePtr = %p'", mptable->OEMTablePtr);
197                 Log("\t.OEMTableSize = 0x%04x", mptable->OEMTableSize);
198                 Log("\t.EntryCount = 0x%04x", mptable->EntryCount);
199                 Log("\t.LocalAPICMemMap = 0x%08x", mptable->LocalAPICMemMap);
200                 Log("\t.ExtendedTableLen = 0x%04x", mptable->ExtendedTableLen);
201                 Log("\t.ExtendedTableChecksum = 0x%02x", mptable->ExtendedTableChecksum);
202                 Log("}");
203                 #endif
204                 
205                 gpMP_LocalAPIC = (void*)MM_MapHWPages(mptable->LocalAPICMemMap, 1);
206                 
207                 ents = mptable->Entries;
208                 giNumCPUs = 0;
209                 
210                 for( i = 0; i < mptable->EntryCount; i ++ )
211                 {
212                          int    entSize = 0;
213                         switch( ents->Type )
214                         {
215                         case 0: // Processor
216                                 entSize = 20;
217                                 #if DUMP_MP_TABLE
218                                 Log("%i: Processor", i);
219                                 Log("\t.APICID = %i", ents->Proc.APICID);
220                                 Log("\t.APICVer = 0x%02x", ents->Proc.APICVer);
221                                 Log("\t.CPUFlags = 0x%02x", ents->Proc.CPUFlags);
222                                 Log("\t.CPUSignature = 0x%08x", ents->Proc.CPUSignature);
223                                 Log("\t.FeatureFlags = 0x%08x", ents->Proc.FeatureFlags);
224                                 #endif
225                                 
226                                 if( !(ents->Proc.CPUFlags & 1) ) {
227                                         Log("DISABLED");
228                                         break;
229                                 }
230                                 
231                                 // Check if there is too many processors
232                                 if(giNumCPUs >= MAX_CPUS) {
233                                         giNumCPUs ++;   // If `giNumCPUs` > MAX_CPUS later, it will be clipped
234                                         break;
235                                 }
236                                 
237                                 // Initialise CPU Info
238                                 gaAPIC_to_CPU[ents->Proc.APICID] = giNumCPUs;
239                                 gaCPUs[giNumCPUs].APICID = ents->Proc.APICID;
240                                 gaCPUs[giNumCPUs].State = 0;
241                                 giNumCPUs ++;
242                                 
243                                 // Set BSP Variable
244                                 if( ents->Proc.CPUFlags & 2 ) {
245                                         giProc_BootProcessorID = giNumCPUs-1;
246                                 }
247                                 
248                                 break;
249                         
250                         #if DUMP_MP_TABLE >= 2
251                         case 1: // Bus
252                                 entSize = 8;
253                                 Log("%i: Bus", i);
254                                 Log("\t.ID = %i", ents->Bus.ID);
255                                 Log("\t.TypeString = '%6C'", ents->Bus.TypeString);
256                                 break;
257                         case 2: // I/O APIC
258                                 entSize = 8;
259                                 Log("%i: I/O APIC", i);
260                                 Log("\t.ID = %i", ents->IOAPIC.ID);
261                                 Log("\t.Version = 0x%02x", ents->IOAPIC.Version);
262                                 Log("\t.Flags = 0x%02x", ents->IOAPIC.Flags);
263                                 Log("\t.Addr = 0x%08x", ents->IOAPIC.Addr);
264                                 break;
265                         case 3: // I/O Interrupt Assignment
266                                 entSize = 8;
267                                 Log("%i: I/O Interrupt Assignment", i);
268                                 Log("\t.IntType = %i", ents->IOInt.IntType);
269                                 Log("\t.Flags = 0x%04x", ents->IOInt.Flags);
270                                 Log("\t.SourceBusID = 0x%02x", ents->IOInt.SourceBusID);
271                                 Log("\t.SourceBusIRQ = 0x%02x", ents->IOInt.SourceBusIRQ);
272                                 Log("\t.DestAPICID = 0x%02x", ents->IOInt.DestAPICID);
273                                 Log("\t.DestAPICIRQ = 0x%02x", ents->IOInt.DestAPICIRQ);
274                                 break;
275                         case 4: // Local Interrupt Assignment
276                                 entSize = 8;
277                                 Log("%i: Local Interrupt Assignment", i);
278                                 Log("\t.IntType = %i", ents->LocalInt.IntType);
279                                 Log("\t.Flags = 0x%04x", ents->LocalInt.Flags);
280                                 Log("\t.SourceBusID = 0x%02x", ents->LocalInt.SourceBusID);
281                                 Log("\t.SourceBusIRQ = 0x%02x", ents->LocalInt.SourceBusIRQ);
282                                 Log("\t.DestLocalAPICID = 0x%02x", ents->LocalInt.DestLocalAPICID);
283                                 Log("\t.DestLocalAPICIRQ = 0x%02x", ents->LocalInt.DestLocalAPICIRQ);
284                                 break;
285                         default:
286                                 Log("%i: Unknown (%i)", i, ents->Type);
287                                 break;
288                         #endif
289                         }
290                         ents = (void*)( (Uint)ents + entSize );
291                 }
292                 
293                 if( giNumCPUs > MAX_CPUS ) {
294                         Warning("Too many CPUs detected (%i), only using %i of them", giNumCPUs, MAX_CPUS);
295                         giNumCPUs = MAX_CPUS;
296                 }
297                 gTSSs = gaTSSs;
298         }
299         else {
300                 Log("No MP Table was found, assuming uniprocessor\n");
301                 giNumCPUs = 1;
302                 gTSSs = &gTSS0;
303         }
304         #else
305         giNumCPUs = 1;
306         gTSSs = &gTSS0;
307         #endif
308         
309         #if !DEBUG_DISABLE_DOUBLEFAULT
310         // Initialise Double Fault TSS
311         gGDT[5].BaseLow = (Uint)&gDoubleFault_TSS & 0xFFFF;
312         gGDT[5].BaseMid = (Uint)&gDoubleFault_TSS >> 16;
313         gGDT[5].BaseHi = (Uint)&gDoubleFault_TSS >> 24;
314         
315         // Set double fault IDT to use the new TSS
316         gIDT[8].OffsetLo = 0;
317         gIDT[8].CS = 5<<3;
318         gIDT[8].Flags = 0x8500;
319         gIDT[8].OffsetHi = 0;
320         #endif
321         
322         // Set timer frequency
323         outb(0x43, 0x34);       // Set Channel 0, Low/High, Rate Generator
324         outb(0x40, TIMER_DIVISOR&0xFF); // Low Byte of Divisor
325         outb(0x40, (TIMER_DIVISOR>>8)&0xFF);    // High Byte
326         
327         Log_Debug("Proc", "PIT Frequency %i.%03i Hz",
328                 TIMER_BASE/TIMER_DIVISOR,
329                 ((Uint64)TIMER_BASE*1000/TIMER_DIVISOR)%1000
330                 );
331         
332         #if USE_MP
333         // Get the count setting for APIC timer
334         Log("Determining APIC Count");
335         __asm__ __volatile__ ("sti");
336         while( giMP_TimerCount == 0 )   __asm__ __volatile__ ("hlt");
337         __asm__ __volatile__ ("cli");
338         Log("APIC Count %i", giMP_TimerCount);
339         {
340                 Uint64  freq = giMP_TimerCount;
341                 freq *= TIMER_BASE;
342                 freq /= TIMER_DIVISOR;
343                 if( (freq /= 1000) < 2*1000)
344                         Log("Bus Frequency %i KHz", freq);
345                 else if( (freq /= 1000) < 2*1000)
346                         Log("Bus Frequency %i MHz", freq);
347                 else if( (freq /= 1000) < 2*1000)
348                         Log("Bus Frequency %i GHz", freq);
349                 else
350                         Log("Bus Frequency %i THz", freq);
351         }
352         
353         // Initialise Normal TSS(s)
354         for(pos=0;pos<giNumCPUs;pos++)
355         {
356         #else
357         pos = 0;
358         #endif
359                 gTSSs[pos].SS0 = 0x10;
360                 gTSSs[pos].ESP0 = 0;    // Set properly by scheduler
361                 gGDT[6+pos].BaseLow = ((Uint)(&gTSSs[pos])) & 0xFFFF;
362                 gGDT[6+pos].BaseMid = ((Uint)(&gTSSs[pos]) >> 16) & 0xFFFF;
363                 gGDT[6+pos].BaseHi = ((Uint)(&gTSSs[pos])) >> 24;
364         #if USE_MP
365         }
366         #endif
367         
368         // Load the BSP's TSS
369         __asm__ __volatile__ ("ltr %%ax"::"a"(0x30));
370         // Set Current Thread and CPU Number in DR0 and DR1
371         __asm__ __volatile__ ("mov %0, %%db0"::"r"(&gThreadZero));
372         __asm__ __volatile__ ("mov %0, %%db1"::"r"(0));
373         
374         gaCPUs[0].Current = &gThreadZero;
375         gThreadZero.CurCPU = 0;
376         
377         gProcessZero.MemState.CR3 = (Uint)gaInitPageDir - KERNEL_BASE;
378         
379         // Create Per-Process Data Block
380         if( !MM_Allocate(MM_PPD_CFG) )
381         {
382                 Panic("OOM - No space for initial Per-Process Config");
383         }
384
385         // Initialise SSE support
386         Proc_InitialiseSSE();
387         
388         // Change Stacks
389         Proc_ChangeStack();
390 }
391
392 #if USE_MP
393 /**
394  * \brief Start an AP
395  */
396 void MP_StartAP(int CPU)
397 {
398         Log_Log("Proc", "Starting AP %i (APIC %i)", CPU, gaCPUs[CPU].APICID);
399         
400         // Set location of AP startup code and mark for a warm restart
401         *(Uint16*)(KERNEL_BASE|0x467) = (Uint)&APWait - (KERNEL_BASE|0xFFFF0);
402         *(Uint16*)(KERNEL_BASE|0x469) = 0xFFFF;
403         outb(0x70, 0x0F);       outb(0x71, 0x0A);       // Set warm reset flag
404         MP_SendIPI(gaCPUs[CPU].APICID, 0, 5);   // Init IPI
405         
406         // Delay
407         inb(0x80); inb(0x80); inb(0x80); inb(0x80);
408         
409         // TODO: Use a better address, preferably registered with the MM
410         // - MM_AllocDMA mabye?
411         // Create a far jump
412         *(Uint8*)(KERNEL_BASE|0x11000) = 0xEA;  // Far JMP
413         *(Uint16*)(KERNEL_BASE|0x11001) = (Uint)&APStartup - (KERNEL_BASE|0xFFFF0);     // IP
414         *(Uint16*)(KERNEL_BASE|0x11003) = 0xFFFF;       // CS
415         // Send a Startup-IPI to make the CPU execute at 0x11000 (which we
416         // just filled)
417         MP_SendIPI(gaCPUs[CPU].APICID, 0x11, 6);        // StartupIPI
418         
419         giNumInitingCPUs ++;
420 }
421
422 void MP_SendIPIVector(int CPU, Uint8 Vector)
423 {
424         MP_SendIPI(gaCPUs[CPU].APICID, Vector, 0);
425 }
426
427 /**
428  * \brief Send an Inter-Processor Interrupt
429  * \param APICID        Processor's Local APIC ID
430  * \param Vector        Argument of some kind
431  * \param DeliveryMode  Type of signal
432  * \note 3A 10.5 "APIC/Handling Local Interrupts"
433  */
434 void MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode)
435 {
436         Uint32  val;
437         
438         // Hi
439         val = (Uint)APICID << 24;
440 //      Log("%p = 0x%08x", &gpMP_LocalAPIC->ICR[1], val);
441         gpMP_LocalAPIC->ICR[1].Val = val;
442         // Low (and send)
443         val = ((DeliveryMode & 7) << 8) | (Vector & 0xFF);
444 //      Log("%p = 0x%08x", &gpMP_LocalAPIC->ICR[0], val);
445         gpMP_LocalAPIC->ICR[0].Val = val;
446 }
447 #endif
448
449 void Proc_IdleThread(void *Ptr)
450 {
451         tCPU    *cpu = &gaCPUs[GetCPUNum()];
452         cpu->Current->ThreadName = strdup("Idle Thread");
453         Threads_SetPriority( cpu->Current, -1 );        // Never called randomly
454         cpu->Current->Quantum = 1;      // 1 slice quantum
455         for(;;) {
456                 __asm__ __volatile__ ("sti");   // Make sure interrupts are enabled
457                 __asm__ __volatile__ ("hlt");   // Make sure interrupts are enabled
458                 Proc_Reschedule();
459         }
460 }
461
462 /**
463  * \fn void Proc_Start(void)
464  * \brief Start process scheduler
465  */
466 void Proc_Start(void)
467 {
468          int    tid;
469         #if USE_MP
470          int    i;
471         #endif
472         
473         #if USE_MP
474         // Start APs
475         for( i = 0; i < giNumCPUs; i ++ )
476         {
477                 if(i)   gaCPUs[i].Current = NULL;
478                 
479                 // Create Idle Task
480                 tid = Proc_NewKThread(Proc_IdleThread, &gaCPUs[i]);
481                 
482                 // Start the AP
483                 if( i != giProc_BootProcessorID ) {
484                         MP_StartAP( i );
485                 }
486         }
487         
488         // BSP still should run the current task
489         gaCPUs[0].Current = &gThreadZero;
490         
491         // Start interrupts and wait for APs to come up
492         Log_Debug("Proc", "Waiting for APs to come up");
493         __asm__ __volatile__ ("sti");
494         while( giNumInitingCPUs )       __asm__ __volatile__ ("hlt");
495         #else
496         // Create Idle Task
497         tid = Proc_NewKThread(Proc_IdleThread, &gaCPUs[0]);
498 //      gaCPUs[0].IdleThread = Threads_GetThread(tid);
499         
500         // Set current task
501         gaCPUs[0].Current = &gThreadZero;
502
503         // Start Interrupts (and hence scheduler)
504         __asm__ __volatile__("sti");
505         #endif
506         MM_FinishVirtualInit();
507 }
508
509 /**
510  * \fn tThread *Proc_GetCurThread(void)
511  * \brief Gets the current thread
512  */
513 tThread *Proc_GetCurThread(void)
514 {
515         #if USE_MP
516         return gaCPUs[ GetCPUNum() ].Current;
517         #else
518         return gaCPUs[ 0 ].Current;
519         #endif
520 }
521
522 /**
523  * \fn void Proc_ChangeStack(void)
524  * \brief Swaps the current stack for a new one (in the proper stack reigon)
525  */
526 void Proc_ChangeStack(void)
527 {
528         Uint    esp, ebp;
529         Uint    tmpEbp, oldEsp;
530         Uint    curBase, newBase;
531
532         __asm__ __volatile__ ("mov %%esp, %0":"=r"(esp));
533         __asm__ __volatile__ ("mov %%ebp, %0":"=r"(ebp));
534
535         oldEsp = esp;
536
537         // Create new KStack
538         newBase = MM_NewKStack();
539         // Check for errors
540         if(newBase == 0) {
541                 Panic("What the?? Unable to allocate space for initial kernel stack");
542                 return;
543         }
544
545         curBase = (Uint)&Kernel_Stack_Top;
546         
547         LOG("curBase = 0x%x, newBase = 0x%x", curBase, newBase);
548
549         // Get ESP as a used size
550         esp = curBase - esp;
551         LOG("memcpy( %p, %p, 0x%x )", (void*)(newBase - esp), (void*)(curBase - esp), esp );
552         // Copy used stack
553         memcpy( (void*)(newBase - esp), (void*)(curBase - esp), esp );
554         // Get ESP as an offset in the new stack
555         esp = newBase - esp;
556         // Adjust EBP
557         ebp = newBase - (curBase - ebp);
558
559         // Repair EBPs & Stack Addresses
560         // Catches arguments also, but may trash stack-address-like values
561         for(tmpEbp = esp; tmpEbp < newBase; tmpEbp += 4)
562         {
563                 if(oldEsp < *(Uint*)tmpEbp && *(Uint*)tmpEbp < curBase)
564                         *(Uint*)tmpEbp += newBase - curBase;
565         }
566         
567         Proc_GetCurThread()->KernelStack = newBase;
568         
569         __asm__ __volatile__ ("mov %0, %%esp"::"r"(esp));
570         __asm__ __volatile__ ("mov %0, %%ebp"::"r"(ebp));
571 }
572
573 void Proc_ClearProcess(tProcess *Process)
574 {
575         MM_ClearSpace(Process->MemState.CR3);
576 }
577
578 void Proc_ClearThread(tThread *Thread)
579 {
580         if(Thread->SavedState.SSE) {
581                 free(Thread->SavedState.SSE);
582                 Thread->SavedState.SSE = NULL;
583         }
584 }
585
586 tTID Proc_NewKThread(void (*Fcn)(void*), void *Data)
587 {
588         Uint    esp;
589         tThread *newThread, *cur;
590         
591         cur = Proc_GetCurThread();
592         newThread = Threads_CloneTCB(0);
593         if(!newThread)  return -1;
594         
595         // Create new KStack
596         newThread->KernelStack = MM_NewKStack();
597         // Check for errors
598         if(newThread->KernelStack == 0) {
599                 free(newThread);
600                 return -1;
601         }
602
603         esp = newThread->KernelStack;
604         *(Uint*)(esp-=4) = (Uint)Data;  // Data (shadowed)
605         *(Uint*)(esp-=4) = 1;   // Number of params
606         *(Uint*)(esp-=4) = (Uint)Fcn;   // Function to call
607         *(Uint*)(esp-=4) = (Uint)newThread;     // Thread ID
608         
609         newThread->SavedState.ESP = esp;
610         newThread->SavedState.EIP = (Uint)&NewTaskHeader;
611         newThread->SavedState.SSE = NULL;
612 //      Log("New (KThread) %p, esp = %p", newThread->SavedState.EIP, newThread->SavedState.ESP);
613         
614 //      MAGIC_BREAK();  
615         Threads_AddActive(newThread);
616
617         return newThread->TID;
618 }
619
620 /**
621  * \fn int Proc_Clone(Uint *Err, Uint Flags)
622  * \brief Clone the current process
623  */
624 tPID Proc_Clone(Uint Flags)
625 {
626         tThread *newThread;
627         tThread *cur = Proc_GetCurThread();
628         Uint    eip;
629
630         // Sanity, please
631         if( !(Flags & CLONE_VM) ) {
632                 Log_Error("Proc", "Proc_Clone: Don't leave CLONE_VM unset, use Proc_NewKThread instead");
633                 return -1;
634         }
635         
636         // New thread
637         newThread = Threads_CloneTCB(Flags);
638         if(!newThread)  return -1;
639
640         newThread->KernelStack = cur->KernelStack;
641
642         // Clone state
643         eip = Proc_CloneInt(&newThread->SavedState.ESP, &newThread->Process->MemState.CR3, Flags & CLONE_NOUSER);
644         if( eip == 0 ) {
645                 return 0;
646         }
647         newThread->SavedState.EIP = eip;
648         newThread->SavedState.SSE = NULL;
649         newThread->SavedState.bSSEModified = 0;
650         
651         // Check for errors
652         if( newThread->Process->MemState.CR3 == 0 ) {
653                 Log_Error("Proc", "Proc_Clone: MM_Clone failed");
654                 Threads_Delete(newThread);
655                 return -1;
656         }
657
658         // Add the new thread to the run queue
659         Threads_AddActive(newThread);
660         return newThread->TID;
661 }
662
663 /**
664  * \fn int Proc_SpawnWorker(void)
665  * \brief Spawns a new worker thread
666  */
667 int Proc_SpawnWorker(void (*Fcn)(void*), void *Data)
668 {
669         tThread *new;
670         Uint    stack_contents[4];
671         
672         // Create new thread
673         new = Threads_CloneThreadZero();
674         if(!new) {
675                 Warning("Proc_SpawnWorker - Out of heap space!\n");
676                 return -1;
677         }
678
679         // Create the stack contents
680         stack_contents[3] = (Uint)Data;
681         stack_contents[2] = 1;
682         stack_contents[1] = (Uint)Fcn;
683         stack_contents[0] = (Uint)new;
684         
685         // Create a new worker stack (in PID0's address space)
686         new->KernelStack = MM_NewWorkerStack(stack_contents, sizeof(stack_contents));
687
688         // Save core machine state
689         new->SavedState.ESP = new->KernelStack - sizeof(stack_contents);
690         new->SavedState.EIP = (Uint)NewTaskHeader;
691         new->SavedState.SSE = NULL;
692         new->SavedState.bSSEModified = 0;
693         
694         // Mark as active
695         new->Status = THREAD_STAT_PREINIT;
696         Threads_AddActive( new );
697         
698         return new->TID;
699 }
700
701 /**
702  * \fn Uint Proc_MakeUserStack(void)
703  * \brief Creates a new user stack
704  */
705 Uint Proc_MakeUserStack(void)
706 {
707          int    i;
708         Uint    base = USER_STACK_TOP - USER_STACK_SZ;
709         
710         // Check Prospective Space
711         for( i = USER_STACK_SZ >> 12; i--; )
712                 if( MM_GetPhysAddr( base + (i<<12) ) != 0 )
713                         break;
714         
715         if(i != -1)     return 0;
716         
717         // Allocate Stack - Allocate incrementally to clean up MM_Dump output
718         for( i = 0; i < USER_STACK_SZ/0x1000; i++ )
719         {
720                 if( !MM_Allocate( base + (i<<12) ) )
721                 {
722                         Warning("OOM: Proc_MakeUserStack");
723                         return 0;
724                 }
725         }
726         
727         return base + USER_STACK_SZ;
728 }
729
730 void Proc_StartUser(Uint Entrypoint, Uint Base, int ArgC, const char **ArgV, int DataSize)
731 {
732         Uint    *stack;
733          int    i;
734         const char      **envp = NULL;
735         Uint16  ss, cs;
736         
737         // Copy data to the user stack and free original buffer
738         stack = (void*)Proc_MakeUserStack();
739         stack -= (DataSize+sizeof(*stack)-1)/sizeof(*stack);
740         memcpy( stack, ArgV, DataSize );
741         free(ArgV);
742         
743         // Adjust Arguments and environment
744         if( DataSize )
745         {
746                 Uint delta = (Uint)stack - (Uint)ArgV;
747                 ArgV = (const char**)stack;
748                 for( i = 0; ArgV[i]; i++ )      ArgV[i] += delta;
749                 envp = &ArgV[i+1];
750                 for( i = 0; envp[i]; i++ )      envp[i] += delta;
751         }
752         
753         // User Mode Segments
754         ss = 0x23;      cs = 0x1B;
755         
756         // Arguments
757         *--stack = (Uint)envp;
758         *--stack = (Uint)ArgV;
759         *--stack = (Uint)ArgC;
760         *--stack = Base;
761         
762         Proc_StartProcess(ss, (Uint)stack, 0x202, cs, Entrypoint);
763 }
764
765 void Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP)
766 {
767         Uint    *stack = (void*)Stack;
768         *--stack = SS;          //Stack Segment
769         *--stack = Stack;       //Stack Pointer
770         *--stack = Flags;       //EFLAGS (Resvd (0x2) and IF (0x20))
771         *--stack = CS;          //Code Segment
772         *--stack = IP;  //EIP
773         //PUSHAD
774         *--stack = 0xAAAAAAAA;  // eax
775         *--stack = 0xCCCCCCCC;  // ecx
776         *--stack = 0xDDDDDDDD;  // edx
777         *--stack = 0xBBBBBBBB;  // ebx
778         *--stack = 0xD1D1D1D1;  // edi
779         *--stack = 0x54545454;  // esp - NOT POPED
780         *--stack = 0x51515151;  // esi
781         *--stack = 0xB4B4B4B4;  // ebp
782         //Individual PUSHs
783         *--stack = SS;  // ds
784         *--stack = SS;  // es
785         *--stack = SS;  // fs
786         *--stack = SS;  // gs
787         
788         __asm__ __volatile__ (
789         "mov %%eax,%%esp;\n\t"  // Set stack pointer
790         "pop %%gs;\n\t"
791         "pop %%fs;\n\t"
792         "pop %%es;\n\t"
793         "pop %%ds;\n\t"
794         "popa;\n\t"
795         "iret;\n\t" : : "a" (stack));
796         for(;;);
797 }
798
799 /**
800  * \fn int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
801  * \brief Demotes a process to a lower permission level
802  * \param Err   Pointer to user's errno
803  * \param Dest  New Permission Level
804  * \param Regs  Pointer to user's register structure
805  */
806 int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
807 {
808          int    cpl = Regs->cs & 3;
809         // Sanity Check
810         if(Dest > 3 || Dest < 0) {
811                 *Err = -EINVAL;
812                 return -1;
813         }
814         
815         // Permission Check
816         if(cpl > Dest) {
817                 *Err = -EACCES;
818                 return -1;
819         }
820         
821         // Change the Segment Registers
822         Regs->cs = (((Dest+1)<<4) | Dest) - 8;
823         Regs->ss = ((Dest+1)<<4) | Dest;
824         // Check if the GP Segs are GDT, then change them
825         if(!(Regs->ds & 4))     Regs->ds = ((Dest+1)<<4) | Dest;
826         if(!(Regs->es & 4))     Regs->es = ((Dest+1)<<4) | Dest;
827         if(!(Regs->fs & 4))     Regs->fs = ((Dest+1)<<4) | Dest;
828         if(!(Regs->gs & 4))     Regs->gs = ((Dest+1)<<4) | Dest;
829         
830         return 0;
831 }
832
833 /**
834  * \brief Calls a signal handler in user mode
835  * \note Used for signals
836  */
837 void Proc_CallFaultHandler(tThread *Thread)
838 {
839         // Rewinds the stack and calls the user function
840         // Never returns
841         Proc_ReturnToUser( Thread->FaultHandler, Thread->CurFaultNum, Thread->KernelStack );
842         for(;;);
843 }
844
845 void Proc_DumpThreadCPUState(tThread *Thread)
846 {
847         if( Thread->CurCPU > -1 )
848         {
849                  int    maxBacktraceDistance = 6;
850                 tRegs   *regs = NULL;
851                 Uint32  *stack;
852                 
853                 if( Thread->CurCPU != GetCPUNum() ) {
854                         Log("  Currently running");
855                         return ;
856                 }
857                 
858                 // Backtrace to find the IRQ entrypoint
859                 // - This will usually only be called by an IRQ, so this should
860                 //   work
861                 __asm__ __volatile__ ("mov %%ebp, %0" : "=r" (stack));
862                 while( maxBacktraceDistance -- )
863                 {
864                         // [ebp] = oldEbp
865                         // [ebp+4] = retaddr
866                         
867                         if( stack[1] == (tVAddr)&IRQCommon_handled ) {
868                                 regs = (void*)stack[2];
869                                 break;
870                         }
871                         
872                         stack = (void*)stack[0];
873                 }
874                 
875                 if( !regs ) {
876                         Log("  Unable to find IRQ Entry");
877                         return ;
878                 }
879                 
880                 Log("  at %04x:%08x", regs->cs, regs->eip);
881                 return ;
882         }
883         
884         tVAddr  diffFromScheduler = Thread->SavedState.EIP - (tVAddr)SwitchTasks;
885         tVAddr  diffFromClone = Thread->SavedState.EIP - (tVAddr)Proc_CloneInt;
886         tVAddr  diffFromSpawn = Thread->SavedState.EIP - (tVAddr)NewTaskHeader;
887         
888         if( diffFromClone > 0 && diffFromClone < 40 )   // When I last checked, .newTask was at .+27
889         {
890                 Log("  Creating process");
891                 return ;
892         }
893         
894         if( diffFromSpawn == 0 )
895         {
896                 Log("  Creating thread");
897                 return ;
898         }
899         
900         if( diffFromScheduler > 0 && diffFromScheduler < 128 )  // When I last checked, GetEIP was at .+0x30
901         {
902                 // Scheduled out
903                 Log("  At %04x:%08x", Thread->SavedState.UserCS, Thread->SavedState.UserEIP);
904                 return ;
905         }
906         
907         Log("  Just created (unknown %p)", Thread->SavedState.EIP);
908 }
909
910 void Proc_Reschedule(void)
911 {
912         tThread *nextthread, *curthread;
913          int    cpu = GetCPUNum();
914
915         // TODO: Wait for the lock?
916         if(IS_LOCKED(&glThreadListLock))        return;
917         
918         curthread = Proc_GetCurThread();
919
920         nextthread = Threads_GetNextToRun(cpu, curthread);
921
922         if(!nextthread || nextthread == curthread)
923                 return ;
924
925         #if DEBUG_TRACE_SWITCH
926         // HACK: Ignores switches to the idle threads
927         if( nextthread->TID == 0 || nextthread->TID > giNumCPUs )
928         {
929                 LogF("\nSwitching CPU %i to %p (%i %s) - CR3 = 0x%x, EIP = %p, ESP = %p\n",
930                         GetCPUNum(),
931                         nextthread, nextthread->TID, nextthread->ThreadName,
932                         nextthread->Process->MemState.CR3,
933                         nextthread->SavedState.EIP,
934                         nextthread->SavedState.ESP
935                         );
936                 LogF("OldCR3 = %P\n", curthread->Process->MemState.CR3);
937         }
938         #endif
939
940         // Update CPU state
941         gaCPUs[cpu].Current = nextthread;
942         gTSSs[cpu].ESP0 = nextthread->KernelStack-4;
943         __asm__ __volatile__("mov %0, %%db0\n\t" : : "r"(nextthread) );
944
945         // Save FPU/MMX/XMM/SSE state
946         if( curthread && curthread->SavedState.SSE )
947         {
948                 Proc_SaveSSE( ((Uint)curthread->SavedState.SSE + 0xF) & ~0xF );
949                 curthread->SavedState.bSSEModified = 0;
950                 Proc_DisableSSE();
951         }
952
953         if( curthread )
954         {
955                 SwitchTasks(
956                         nextthread->SavedState.ESP, &curthread->SavedState.ESP,
957                         nextthread->SavedState.EIP, &curthread->SavedState.EIP,
958                         nextthread->Process->MemState.CR3
959                         );
960         }
961         else
962         {
963                 SwitchTasks(
964                         nextthread->SavedState.ESP, 0,
965                         nextthread->SavedState.EIP, 0,
966                         nextthread->Process->MemState.CR3
967                         );
968         }
969
970         return ;
971 }
972
973 /**
974  * \fn void Proc_Scheduler(int CPU)
975  * \brief Swap current thread and clears dead threads
976  */
977 void Proc_Scheduler(int CPU)
978 {
979 #if 0
980         tThread *thread;
981         
982         // If the spinlock is set, let it complete
983         if(IS_LOCKED(&glThreadListLock))        return;
984         
985         // Get current thread
986         thread = gaCPUs[CPU].Current;
987         
988         if( thread )
989         {
990                 tRegs   *regs;
991                 Uint    ebp;
992                 // Reduce remaining quantum and continue timeslice if non-zero
993                 if( thread->Remaining-- )
994                         return;
995                 // Reset quantum for next call
996                 thread->Remaining = thread->Quantum;
997                 
998                 // TODO: Make this more stable somehow
999                 __asm__ __volatile__("mov %%ebp, %0" : "=r" (ebp));
1000                 regs = (tRegs*)(ebp+(2+2)*4);   // EBP,Ret + CPU,CurThread
1001                 thread->SavedState.UserCS = regs->cs;
1002                 thread->SavedState.UserEIP = regs->eip;
1003                 
1004                 if(thread->bInstrTrace) {
1005                         regs->eflags |= 0x100;  // Set TF
1006                         Log("%p De-scheduled", thread);
1007                 }
1008                 else
1009                         regs->eflags &= ~0x100; // Clear TF
1010         }
1011
1012         // TODO: Ack timer?
1013         #if USE_MP
1014         if( GetCPUNum() )
1015                 gpMP_LocalAPIC->EOI.Val = 0;
1016         else
1017         #endif
1018                 outb(0x20, 0x20);
1019         __asm__ __volatile__ ("sti");
1020         Proc_Reschedule();
1021 #endif
1022 }
1023
1024 // === EXPORTS ===
1025 EXPORT(Proc_SpawnWorker);

UCC git Repository :: git.ucc.asn.au