Kernel - Fixed freeze (I think)
[tpg/acess2.git] / KernelLand / Kernel / arch / x86 / proc.c
1 /*
2  * AcessOS Microkernel Version
3  * proc.c
4  */
5 #include <acess.h>
6 #include <threads.h>
7 #include <proc.h>
8 #include <desctab.h>
9 #include <mm_virt.h>
10 #include <errno.h>
11 #if USE_MP
12 # include <mp.h>
13 #endif
14 #include <hal_proc.h>
15 #include <arch_int.h>
16
17 // === FLAGS ===
18 #define DEBUG_TRACE_SWITCH      0
19 #define DEBUG_DISABLE_DOUBLEFAULT       1
20 #define DEBUG_VERY_SLOW_PERIOD  0
21
22 // === CONSTANTS ===
23 // Base is 1193182
24 #define TIMER_BASE      1193182
25 #if DEBUG_VERY_SLOW_PERIOD
26 # define TIMER_DIVISOR  1193    //~10Hz switch, with 10 quantum = 1s per thread
27 #else
28 # define TIMER_DIVISOR  11932   //~100Hz
29 #endif
30
31 // === TYPES ===
32 typedef struct sCPU
33 {
34         Uint8   APICID;
35         Uint8   State;  // 0: Unavaliable, 1: Idle, 2: Active
36         Uint16  Resvd;
37         tThread *Current;
38         tThread *LastTimerThread;       // Used to do preeemption
39 }       tCPU;
40
41 // === IMPORTS ===
42 extern tGDT     gGDT[];
43 extern tIDT     gIDT[];
44 extern void     APWait(void);   // 16-bit AP pause code
45 extern void     APStartup(void);        // 16-bit AP startup code
46 extern Uint     GetEIP(void);   // start.asm
47 extern Uint     GetEIP_Sched(void);     // proc.asm
48 extern void     NewTaskHeader(tThread *Thread, void *Fcn, int nArgs, ...);      // Actually takes cdecl args
49 extern Uint     Proc_CloneInt(Uint *ESP, Uint32 *CR3, int bNoUserClone);
50 extern Uint32   gaInitPageDir[1024];    // start.asm
51 extern char     Kernel_Stack_Top[];
52 extern int      giNumCPUs;
53 extern int      giNextTID;
54 extern tThread  gThreadZero;
55 extern tProcess gProcessZero;
56 extern void     Isr8(void);     // Double Fault
57 extern void     Proc_ReturnToUser(tVAddr Handler, Uint Argument, tVAddr KernelStack);
58 extern char     scheduler_return[];     // Return address in SchedulerBase
59 extern char     IRQCommon[];    // Common IRQ handler code
60 extern char     IRQCommon_handled[];    // IRQCommon call return location
61 extern char     GetEIP_Sched_ret[];     // GetEIP call return location
62 extern void     SwitchTasks(Uint NewSP, Uint *OldSP, Uint NewIP, Uint *OldIO, Uint CR3);
63 extern void     Proc_InitialiseSSE(void);
64 extern void     Proc_SaveSSE(Uint DestPtr);
65 extern void     Proc_DisableSSE(void);
66
67 // === PROTOTYPES ===
68 //void  ArchThreads_Init(void);
69 #if USE_MP
70 void    MP_StartAP(int CPU);
71 void    MP_SendIPIVector(int CPU, Uint8 Vector);
72 void    MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode);
73 #endif
74 void    Proc_IdleThread(void *Ptr);
75 //void  Proc_Start(void);
76 //tThread       *Proc_GetCurThread(void);
77 void    Proc_ChangeStack(void);
78 // int  Proc_NewKThread(void (*Fcn)(void*), void *Data);
79 // int  Proc_Clone(Uint *Err, Uint Flags);
80 Uint    Proc_MakeUserStack(void);
81 //void  Proc_StartUser(Uint Entrypoint, Uint *Bases, int ArgC, char **ArgV, char **EnvP, int DataSize);
82 void    Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP) NORETURN;
83  int    Proc_Demote(Uint *Err, int Dest, tRegs *Regs);
84 //void  Proc_CallFaultHandler(tThread *Thread);
85 //void  Proc_DumpThreadCPUState(tThread *Thread);
86 void    Proc_Scheduler(int CPU);
87
88 // === GLOBALS ===
89 // --- Multiprocessing ---
90 #if USE_MP
91 volatile int    giNumInitingCPUs = 0;
92 tMPInfo *gMPFloatPtr = NULL;
93 volatile Uint32 giMP_TimerCount;        // Start Count for Local APIC Timer
94 tAPIC   *gpMP_LocalAPIC = NULL;
95 Uint8   gaAPIC_to_CPU[256] = {0};
96  int    giProc_BootProcessorID = 0;
97 tTSS    gaTSSs[MAX_CPUS];       // TSS Array
98 #endif
99 tCPU    gaCPUs[MAX_CPUS] = {
100         {.Current = &gThreadZero}
101         };
102 tTSS    *gTSSs = NULL;  // Pointer to TSS array
103 tTSS    gTSS0 = {0};
104 // --- Error Recovery ---
105 char    gaDoubleFaultStack[1024] __attribute__ ((section(".padata")));
106 tTSS    gDoubleFault_TSS = {
107         .ESP0 = (Uint)&gaDoubleFaultStack[1024],
108         .SS0 = 0x10,
109         .CR3 = (Uint)gaInitPageDir - KERNEL_BASE,
110         .EIP = (Uint)Isr8,
111         .ESP = (Uint)&gaDoubleFaultStack[1024],
112         .CS = 0x08,     .SS = 0x10,
113         .DS = 0x10,     .ES = 0x10,
114         .FS = 0x10,     .GS = 0x10,
115 };
116
117 // === CODE ===
118 /**
119  * \fn void ArchThreads_Init(void)
120  * \brief Starts the process scheduler
121  */
122 void ArchThreads_Init(void)
123 {
124         Uint    pos = 0;
125         
126         #if USE_MP
127         tMPTable        *mptable;
128         
129         // Mark BSP as active
130         gaCPUs[0].State = 2;
131         
132         // -- Initialise Multiprocessing
133         // Find MP Floating Table
134         // - EBDA/Last 1Kib (640KiB)
135         for(pos = KERNEL_BASE|0x9F000; pos < (KERNEL_BASE|0xA0000); pos += 16) {
136                 if( *(Uint*)(pos) == MPPTR_IDENT ) {
137                         Log("Possible %p", pos);
138                         if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
139                         gMPFloatPtr = (void*)pos;
140                         break;
141                 }
142         }
143         // - Last KiB (512KiB base mem)
144         if(!gMPFloatPtr) {
145                 for(pos = KERNEL_BASE|0x7F000; pos < (KERNEL_BASE|0x80000); pos += 16) {
146                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
147                                 Log("Possible %p", pos);
148                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
149                                 gMPFloatPtr = (void*)pos;
150                                 break;
151                         }
152                 }
153         }
154         // - BIOS ROM
155         if(!gMPFloatPtr) {
156                 for(pos = KERNEL_BASE|0xE0000; pos < (KERNEL_BASE|0x100000); pos += 16) {
157                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
158                                 Log("Possible %p", pos);
159                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
160                                 gMPFloatPtr = (void*)pos;
161                                 break;
162                         }
163                 }
164         }
165         
166         // If the MP Table Exists, parse it
167         if(gMPFloatPtr)
168         {
169                  int    i;
170                 tMPTable_Ent    *ents;
171                 #if DUMP_MP_TABLE
172                 Log("gMPFloatPtr = %p", gMPFloatPtr);
173                 Log("*gMPFloatPtr = {");
174                 Log("\t.Sig = 0x%08x", gMPFloatPtr->Sig);
175                 Log("\t.MPConfig = 0x%08x", gMPFloatPtr->MPConfig);
176                 Log("\t.Length = 0x%02x", gMPFloatPtr->Length);
177                 Log("\t.Version = 0x%02x", gMPFloatPtr->Version);
178                 Log("\t.Checksum = 0x%02x", gMPFloatPtr->Checksum);
179                 Log("\t.Features = [0x%02x,0x%02x,0x%02x,0x%02x,0x%02x]",
180                         gMPFloatPtr->Features[0],       gMPFloatPtr->Features[1],
181                         gMPFloatPtr->Features[2],       gMPFloatPtr->Features[3],
182                         gMPFloatPtr->Features[4]
183                         );
184                 Log("}");
185                 #endif          
186
187                 mptable = (void*)( KERNEL_BASE|gMPFloatPtr->MPConfig );
188                 #if DUMP_MP_TABLE
189                 Log("mptable = %p", mptable);
190                 Log("*mptable = {");
191                 Log("\t.Sig = 0x%08x", mptable->Sig);
192                 Log("\t.BaseTableLength = 0x%04x", mptable->BaseTableLength);
193                 Log("\t.SpecRev = 0x%02x", mptable->SpecRev);
194                 Log("\t.Checksum = 0x%02x", mptable->Checksum);
195                 Log("\t.OEMID = '%8c'", mptable->OemID);
196                 Log("\t.ProductID = '%8c'", mptable->ProductID);
197                 Log("\t.OEMTablePtr = %p'", mptable->OEMTablePtr);
198                 Log("\t.OEMTableSize = 0x%04x", mptable->OEMTableSize);
199                 Log("\t.EntryCount = 0x%04x", mptable->EntryCount);
200                 Log("\t.LocalAPICMemMap = 0x%08x", mptable->LocalAPICMemMap);
201                 Log("\t.ExtendedTableLen = 0x%04x", mptable->ExtendedTableLen);
202                 Log("\t.ExtendedTableChecksum = 0x%02x", mptable->ExtendedTableChecksum);
203                 Log("}");
204                 #endif
205                 
206                 gpMP_LocalAPIC = (void*)MM_MapHWPages(mptable->LocalAPICMemMap, 1);
207                 
208                 ents = mptable->Entries;
209                 giNumCPUs = 0;
210                 
211                 for( i = 0; i < mptable->EntryCount; i ++ )
212                 {
213                          int    entSize = 0;
214                         switch( ents->Type )
215                         {
216                         case 0: // Processor
217                                 entSize = 20;
218                                 #if DUMP_MP_TABLE
219                                 Log("%i: Processor", i);
220                                 Log("\t.APICID = %i", ents->Proc.APICID);
221                                 Log("\t.APICVer = 0x%02x", ents->Proc.APICVer);
222                                 Log("\t.CPUFlags = 0x%02x", ents->Proc.CPUFlags);
223                                 Log("\t.CPUSignature = 0x%08x", ents->Proc.CPUSignature);
224                                 Log("\t.FeatureFlags = 0x%08x", ents->Proc.FeatureFlags);
225                                 #endif
226                                 
227                                 if( !(ents->Proc.CPUFlags & 1) ) {
228                                         Log("DISABLED");
229                                         break;
230                                 }
231                                 
232                                 // Check if there is too many processors
233                                 if(giNumCPUs >= MAX_CPUS) {
234                                         giNumCPUs ++;   // If `giNumCPUs` > MAX_CPUS later, it will be clipped
235                                         break;
236                                 }
237                                 
238                                 // Initialise CPU Info
239                                 gaAPIC_to_CPU[ents->Proc.APICID] = giNumCPUs;
240                                 gaCPUs[giNumCPUs].APICID = ents->Proc.APICID;
241                                 gaCPUs[giNumCPUs].State = 0;
242                                 giNumCPUs ++;
243                                 
244                                 // Set BSP Variable
245                                 if( ents->Proc.CPUFlags & 2 ) {
246                                         giProc_BootProcessorID = giNumCPUs-1;
247                                 }
248                                 
249                                 break;
250                         
251                         #if DUMP_MP_TABLE >= 2
252                         case 1: // Bus
253                                 entSize = 8;
254                                 Log("%i: Bus", i);
255                                 Log("\t.ID = %i", ents->Bus.ID);
256                                 Log("\t.TypeString = '%6C'", ents->Bus.TypeString);
257                                 break;
258                         case 2: // I/O APIC
259                                 entSize = 8;
260                                 Log("%i: I/O APIC", i);
261                                 Log("\t.ID = %i", ents->IOAPIC.ID);
262                                 Log("\t.Version = 0x%02x", ents->IOAPIC.Version);
263                                 Log("\t.Flags = 0x%02x", ents->IOAPIC.Flags);
264                                 Log("\t.Addr = 0x%08x", ents->IOAPIC.Addr);
265                                 break;
266                         case 3: // I/O Interrupt Assignment
267                                 entSize = 8;
268                                 Log("%i: I/O Interrupt Assignment", i);
269                                 Log("\t.IntType = %i", ents->IOInt.IntType);
270                                 Log("\t.Flags = 0x%04x", ents->IOInt.Flags);
271                                 Log("\t.SourceBusID = 0x%02x", ents->IOInt.SourceBusID);
272                                 Log("\t.SourceBusIRQ = 0x%02x", ents->IOInt.SourceBusIRQ);
273                                 Log("\t.DestAPICID = 0x%02x", ents->IOInt.DestAPICID);
274                                 Log("\t.DestAPICIRQ = 0x%02x", ents->IOInt.DestAPICIRQ);
275                                 break;
276                         case 4: // Local Interrupt Assignment
277                                 entSize = 8;
278                                 Log("%i: Local Interrupt Assignment", i);
279                                 Log("\t.IntType = %i", ents->LocalInt.IntType);
280                                 Log("\t.Flags = 0x%04x", ents->LocalInt.Flags);
281                                 Log("\t.SourceBusID = 0x%02x", ents->LocalInt.SourceBusID);
282                                 Log("\t.SourceBusIRQ = 0x%02x", ents->LocalInt.SourceBusIRQ);
283                                 Log("\t.DestLocalAPICID = 0x%02x", ents->LocalInt.DestLocalAPICID);
284                                 Log("\t.DestLocalAPICIRQ = 0x%02x", ents->LocalInt.DestLocalAPICIRQ);
285                                 break;
286                         default:
287                                 Log("%i: Unknown (%i)", i, ents->Type);
288                                 break;
289                         #endif
290                         }
291                         ents = (void*)( (Uint)ents + entSize );
292                 }
293                 
294                 if( giNumCPUs > MAX_CPUS ) {
295                         Warning("Too many CPUs detected (%i), only using %i of them", giNumCPUs, MAX_CPUS);
296                         giNumCPUs = MAX_CPUS;
297                 }
298                 gTSSs = gaTSSs;
299         }
300         else {
301                 Log("No MP Table was found, assuming uniprocessor\n");
302                 giNumCPUs = 1;
303                 gTSSs = &gTSS0;
304         }
305         #else
306         giNumCPUs = 1;
307         gTSSs = &gTSS0;
308         #endif
309         
310         #if !DEBUG_DISABLE_DOUBLEFAULT
311         // Initialise Double Fault TSS
312         gGDT[5].BaseLow = (Uint)&gDoubleFault_TSS & 0xFFFF;
313         gGDT[5].BaseMid = (Uint)&gDoubleFault_TSS >> 16;
314         gGDT[5].BaseHi = (Uint)&gDoubleFault_TSS >> 24;
315         
316         // Set double fault IDT to use the new TSS
317         gIDT[8].OffsetLo = 0;
318         gIDT[8].CS = 5<<3;
319         gIDT[8].Flags = 0x8500;
320         gIDT[8].OffsetHi = 0;
321         #endif
322         
323         // Set timer frequency
324         outb(0x43, 0x34);       // Set Channel 0, Low/High, Rate Generator
325         outb(0x40, TIMER_DIVISOR&0xFF); // Low Byte of Divisor
326         outb(0x40, (TIMER_DIVISOR>>8)&0xFF);    // High Byte
327         
328         Log_Debug("Proc", "PIT Frequency %i.%03i Hz",
329                 TIMER_BASE/TIMER_DIVISOR,
330                 ((Uint64)TIMER_BASE*1000/TIMER_DIVISOR)%1000
331                 );
332         
333         #if USE_MP
334         // Get the count setting for APIC timer
335         Log("Determining APIC Count");
336         __asm__ __volatile__ ("sti");
337         while( giMP_TimerCount == 0 )   __asm__ __volatile__ ("hlt");
338         __asm__ __volatile__ ("cli");
339         Log("APIC Count %i", giMP_TimerCount);
340         {
341                 Uint64  freq = giMP_TimerCount;
342                 freq *= TIMER_BASE;
343                 freq /= TIMER_DIVISOR;
344                 if( (freq /= 1000) < 2*1000)
345                         Log("Bus Frequency %i KHz", freq);
346                 else if( (freq /= 1000) < 2*1000)
347                         Log("Bus Frequency %i MHz", freq);
348                 else if( (freq /= 1000) < 2*1000)
349                         Log("Bus Frequency %i GHz", freq);
350                 else
351                         Log("Bus Frequency %i THz", freq);
352         }
353         
354         // Initialise Normal TSS(s)
355         for(pos=0;pos<giNumCPUs;pos++)
356         {
357         #else
358         pos = 0;
359         #endif
360                 gTSSs[pos].SS0 = 0x10;
361                 gTSSs[pos].ESP0 = 0;    // Set properly by scheduler
362                 gGDT[6+pos].BaseLow = ((Uint)(&gTSSs[pos])) & 0xFFFF;
363                 gGDT[6+pos].BaseMid = ((Uint)(&gTSSs[pos]) >> 16) & 0xFFFF;
364                 gGDT[6+pos].BaseHi = ((Uint)(&gTSSs[pos])) >> 24;
365         #if USE_MP
366         }
367         #endif
368         
369         // Load the BSP's TSS
370         __asm__ __volatile__ ("ltr %%ax"::"a"(0x30));
371         // Set Current Thread and CPU Number in DR0 and DR1
372         __asm__ __volatile__ ("mov %0, %%db0"::"r"(&gThreadZero));
373         __asm__ __volatile__ ("mov %0, %%db1"::"r"(0));
374         
375         gaCPUs[0].Current = &gThreadZero;
376         gThreadZero.CurCPU = 0;
377         
378         gProcessZero.MemState.CR3 = (Uint)gaInitPageDir - KERNEL_BASE;
379         
380         // Create Per-Process Data Block
381         if( !MM_Allocate(MM_PPD_CFG) )
382         {
383                 Panic("OOM - No space for initial Per-Process Config");
384         }
385
386         // Initialise SSE support
387         Proc_InitialiseSSE();
388         
389         // Change Stacks
390         Proc_ChangeStack();
391 }
392
393 #if USE_MP
394 /**
395  * \brief Start an AP
396  */
397 void MP_StartAP(int CPU)
398 {
399         Log_Log("Proc", "Starting AP %i (APIC %i)", CPU, gaCPUs[CPU].APICID);
400         
401         // Set location of AP startup code and mark for a warm restart
402         *(Uint16*)(KERNEL_BASE|0x467) = (Uint)&APWait - (KERNEL_BASE|0xFFFF0);
403         *(Uint16*)(KERNEL_BASE|0x469) = 0xFFFF;
404         outb(0x70, 0x0F);       outb(0x71, 0x0A);       // Set warm reset flag
405         MP_SendIPI(gaCPUs[CPU].APICID, 0, 5);   // Init IPI
406         
407         // Delay
408         inb(0x80); inb(0x80); inb(0x80); inb(0x80);
409         
410         // TODO: Use a better address, preferably registered with the MM
411         // - MM_AllocDMA mabye?
412         // Create a far jump
413         *(Uint8*)(KERNEL_BASE|0x11000) = 0xEA;  // Far JMP
414         *(Uint16*)(KERNEL_BASE|0x11001) = (Uint)&APStartup - (KERNEL_BASE|0xFFFF0);     // IP
415         *(Uint16*)(KERNEL_BASE|0x11003) = 0xFFFF;       // CS
416         // Send a Startup-IPI to make the CPU execute at 0x11000 (which we
417         // just filled)
418         MP_SendIPI(gaCPUs[CPU].APICID, 0x11, 6);        // StartupIPI
419         
420         giNumInitingCPUs ++;
421 }
422
423 void MP_SendIPIVector(int CPU, Uint8 Vector)
424 {
425         MP_SendIPI(gaCPUs[CPU].APICID, Vector, 0);
426 }
427
428 /**
429  * \brief Send an Inter-Processor Interrupt
430  * \param APICID        Processor's Local APIC ID
431  * \param Vector        Argument of some kind
432  * \param DeliveryMode  Type of signal
433  * \note 3A 10.5 "APIC/Handling Local Interrupts"
434  */
435 void MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode)
436 {
437         Uint32  val;
438         
439         // Hi
440         val = (Uint)APICID << 24;
441 //      Log("%p = 0x%08x", &gpMP_LocalAPIC->ICR[1], val);
442         gpMP_LocalAPIC->ICR[1].Val = val;
443         // Low (and send)
444         val = ((DeliveryMode & 7) << 8) | (Vector & 0xFF);
445 //      Log("%p = 0x%08x", &gpMP_LocalAPIC->ICR[0], val);
446         gpMP_LocalAPIC->ICR[0].Val = val;
447 }
448 #endif
449
450 void Proc_IdleThread(void *Ptr)
451 {
452         tCPU    *cpu = &gaCPUs[GetCPUNum()];
453         cpu->Current->ThreadName = strdup("Idle Thread");
454         Threads_SetPriority( cpu->Current, -1 );        // Never called randomly
455         cpu->Current->Quantum = 1;      // 1 slice quantum
456         for(;;) {
457                 __asm__ __volatile__ ("sti");   // Make sure interrupts are enabled
458                 __asm__ __volatile__ ("hlt");   // Make sure interrupts are enabled
459                 Proc_Reschedule();
460         }
461 }
462
463 /**
464  * \fn void Proc_Start(void)
465  * \brief Start process scheduler
466  */
467 void Proc_Start(void)
468 {
469          int    tid;
470         #if USE_MP
471          int    i;
472         #endif
473         
474         #if USE_MP
475         // Start APs
476         for( i = 0; i < giNumCPUs; i ++ )
477         {
478                 if(i)   gaCPUs[i].Current = NULL;
479                 
480                 // Create Idle Task
481                 tid = Proc_NewKThread(Proc_IdleThread, &gaCPUs[i]);
482                 
483                 // Start the AP
484                 if( i != giProc_BootProcessorID ) {
485                         MP_StartAP( i );
486                 }
487         }
488         
489         // BSP still should run the current task
490         gaCPUs[0].Current = &gThreadZero;
491         
492         // Start interrupts and wait for APs to come up
493         Log_Debug("Proc", "Waiting for APs to come up");
494         __asm__ __volatile__ ("sti");
495         while( giNumInitingCPUs )       __asm__ __volatile__ ("hlt");
496         #else
497         // Create Idle Task
498         tid = Proc_NewKThread(Proc_IdleThread, &gaCPUs[0]);
499 //      gaCPUs[0].IdleThread = Threads_GetThread(tid);
500         
501         // Set current task
502         gaCPUs[0].Current = &gThreadZero;
503
504         // Start Interrupts (and hence scheduler)
505         __asm__ __volatile__("sti");
506         #endif
507         MM_FinishVirtualInit();
508 }
509
510 /**
511  * \fn tThread *Proc_GetCurThread(void)
512  * \brief Gets the current thread
513  */
514 tThread *Proc_GetCurThread(void)
515 {
516         #if USE_MP
517         return gaCPUs[ GetCPUNum() ].Current;
518         #else
519         return gaCPUs[ 0 ].Current;
520         #endif
521 }
522
523 /**
524  * \fn void Proc_ChangeStack(void)
525  * \brief Swaps the current stack for a new one (in the proper stack reigon)
526  */
527 void Proc_ChangeStack(void)
528 {
529         Uint    esp, ebp;
530         Uint    tmpEbp, oldEsp;
531         Uint    curBase, newBase;
532
533         __asm__ __volatile__ ("mov %%esp, %0":"=r"(esp));
534         __asm__ __volatile__ ("mov %%ebp, %0":"=r"(ebp));
535
536         oldEsp = esp;
537
538         // Create new KStack
539         newBase = MM_NewKStack();
540         // Check for errors
541         if(newBase == 0) {
542                 Panic("What the?? Unable to allocate space for initial kernel stack");
543                 return;
544         }
545
546         curBase = (Uint)&Kernel_Stack_Top;
547         
548         LOG("curBase = 0x%x, newBase = 0x%x", curBase, newBase);
549
550         // Get ESP as a used size
551         esp = curBase - esp;
552         LOG("memcpy( %p, %p, 0x%x )", (void*)(newBase - esp), (void*)(curBase - esp), esp );
553         // Copy used stack
554         memcpy( (void*)(newBase - esp), (void*)(curBase - esp), esp );
555         // Get ESP as an offset in the new stack
556         esp = newBase - esp;
557         // Adjust EBP
558         ebp = newBase - (curBase - ebp);
559
560         // Repair EBPs & Stack Addresses
561         // Catches arguments also, but may trash stack-address-like values
562         for(tmpEbp = esp; tmpEbp < newBase; tmpEbp += 4)
563         {
564                 if(oldEsp < *(Uint*)tmpEbp && *(Uint*)tmpEbp < curBase)
565                         *(Uint*)tmpEbp += newBase - curBase;
566         }
567         
568         Proc_GetCurThread()->KernelStack = newBase;
569         
570         __asm__ __volatile__ ("mov %0, %%esp"::"r"(esp));
571         __asm__ __volatile__ ("mov %0, %%ebp"::"r"(ebp));
572 }
573
574 void Proc_ClearProcess(tProcess *Process)
575 {
576         MM_ClearSpace(Process->MemState.CR3);
577 }
578
579 void Proc_ClearThread(tThread *Thread)
580 {
581         if(Thread->SavedState.SSE) {
582                 free(Thread->SavedState.SSE);
583                 Thread->SavedState.SSE = NULL;
584         }
585 }
586
587 tTID Proc_NewKThread(void (*Fcn)(void*), void *Data)
588 {
589         Uint    esp;
590         tThread *newThread, *cur;
591         
592         cur = Proc_GetCurThread();
593         newThread = Threads_CloneTCB(0);
594         if(!newThread)  return -1;
595         
596         // Create new KStack
597         newThread->KernelStack = MM_NewKStack();
598         // Check for errors
599         if(newThread->KernelStack == 0) {
600                 free(newThread);
601                 return -1;
602         }
603
604         esp = newThread->KernelStack;
605         *(Uint*)(esp-=4) = (Uint)Data;  // Data (shadowed)
606         *(Uint*)(esp-=4) = 1;   // Number of params
607         *(Uint*)(esp-=4) = (Uint)Fcn;   // Function to call
608         *(Uint*)(esp-=4) = (Uint)newThread;     // Thread ID
609         
610         newThread->SavedState.ESP = esp;
611         newThread->SavedState.EIP = (Uint)&NewTaskHeader;
612         newThread->SavedState.SSE = NULL;
613 //      Log("New (KThread) %p, esp = %p", newThread->SavedState.EIP, newThread->SavedState.ESP);
614         
615 //      MAGIC_BREAK();  
616         Threads_AddActive(newThread);
617
618         return newThread->TID;
619 }
620
621 /**
622  * \fn int Proc_Clone(Uint *Err, Uint Flags)
623  * \brief Clone the current process
624  */
625 tPID Proc_Clone(Uint Flags)
626 {
627         tThread *newThread;
628         tThread *cur = Proc_GetCurThread();
629         Uint    eip;
630
631         // Sanity, please
632         if( !(Flags & CLONE_VM) ) {
633                 Log_Error("Proc", "Proc_Clone: Don't leave CLONE_VM unset, use Proc_NewKThread instead");
634                 return -1;
635         }
636         
637         // New thread
638         newThread = Threads_CloneTCB(Flags);
639         if(!newThread)  return -1;
640
641         newThread->KernelStack = cur->KernelStack;
642
643         // Clone state
644         eip = Proc_CloneInt(&newThread->SavedState.ESP, &newThread->Process->MemState.CR3, Flags & CLONE_NOUSER);
645         if( eip == 0 ) {
646                 return 0;
647         }
648         newThread->SavedState.EIP = eip;
649         newThread->SavedState.SSE = NULL;
650         newThread->SavedState.bSSEModified = 0;
651         
652         // Check for errors
653         if( newThread->Process->MemState.CR3 == 0 ) {
654                 Log_Error("Proc", "Proc_Clone: MM_Clone failed");
655                 Threads_Delete(newThread);
656                 return -1;
657         }
658
659         // Add the new thread to the run queue
660         Threads_AddActive(newThread);
661         return newThread->TID;
662 }
663
664 /**
665  * \fn int Proc_SpawnWorker(void)
666  * \brief Spawns a new worker thread
667  */
668 int Proc_SpawnWorker(void (*Fcn)(void*), void *Data)
669 {
670         tThread *new;
671         Uint    stack_contents[4];
672         
673         // Create new thread
674         new = Threads_CloneThreadZero();
675         if(!new) {
676                 Warning("Proc_SpawnWorker - Out of heap space!\n");
677                 return -1;
678         }
679
680         // Create the stack contents
681         stack_contents[3] = (Uint)Data;
682         stack_contents[2] = 1;
683         stack_contents[1] = (Uint)Fcn;
684         stack_contents[0] = (Uint)new;
685         
686         // Create a new worker stack (in PID0's address space)
687         new->KernelStack = MM_NewWorkerStack(stack_contents, sizeof(stack_contents));
688
689         // Save core machine state
690         new->SavedState.ESP = new->KernelStack - sizeof(stack_contents);
691         new->SavedState.EIP = (Uint)NewTaskHeader;
692         new->SavedState.SSE = NULL;
693         new->SavedState.bSSEModified = 0;
694         
695         // Mark as active
696         new->Status = THREAD_STAT_PREINIT;
697         Threads_AddActive( new );
698         
699         return new->TID;
700 }
701
702 /**
703  * \fn Uint Proc_MakeUserStack(void)
704  * \brief Creates a new user stack
705  */
706 Uint Proc_MakeUserStack(void)
707 {
708          int    i;
709         Uint    base = USER_STACK_TOP - USER_STACK_SZ;
710         
711         // Check Prospective Space
712         for( i = USER_STACK_SZ >> 12; i--; )
713                 if( MM_GetPhysAddr( base + (i<<12) ) != 0 )
714                         break;
715         
716         if(i != -1)     return 0;
717         
718         // Allocate Stack - Allocate incrementally to clean up MM_Dump output
719         for( i = 0; i < USER_STACK_SZ/0x1000; i++ )
720         {
721                 if( !MM_Allocate( base + (i<<12) ) )
722                 {
723                         Warning("OOM: Proc_MakeUserStack");
724                         return 0;
725                 }
726         }
727         
728         return base + USER_STACK_SZ;
729 }
730
731 void Proc_StartUser(Uint Entrypoint, Uint Base, int ArgC, const char **ArgV, int DataSize)
732 {
733         Uint    *stack;
734          int    i;
735         const char      **envp = NULL;
736         Uint16  ss, cs;
737         
738         // Copy data to the user stack and free original buffer
739         stack = (void*)Proc_MakeUserStack();
740         stack -= (DataSize+sizeof(*stack)-1)/sizeof(*stack);
741         memcpy( stack, ArgV, DataSize );
742         free(ArgV);
743         
744         // Adjust Arguments and environment
745         if( DataSize )
746         {
747                 Uint delta = (Uint)stack - (Uint)ArgV;
748                 ArgV = (const char**)stack;
749                 for( i = 0; ArgV[i]; i++ )      ArgV[i] += delta;
750                 envp = &ArgV[i+1];
751                 for( i = 0; envp[i]; i++ )      envp[i] += delta;
752         }
753         
754         // User Mode Segments
755         ss = 0x23;      cs = 0x1B;
756         
757         // Arguments
758         *--stack = (Uint)envp;
759         *--stack = (Uint)ArgV;
760         *--stack = (Uint)ArgC;
761         *--stack = Base;
762         
763         Proc_StartProcess(ss, (Uint)stack, 0x202, cs, Entrypoint);
764 }
765
766 void Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP)
767 {
768         Uint    *stack = (void*)Stack;
769         *--stack = SS;          //Stack Segment
770         *--stack = Stack;       //Stack Pointer
771         *--stack = Flags;       //EFLAGS (Resvd (0x2) and IF (0x20))
772         *--stack = CS;          //Code Segment
773         *--stack = IP;  //EIP
774         //PUSHAD
775         *--stack = 0xAAAAAAAA;  // eax
776         *--stack = 0xCCCCCCCC;  // ecx
777         *--stack = 0xDDDDDDDD;  // edx
778         *--stack = 0xBBBBBBBB;  // ebx
779         *--stack = 0xD1D1D1D1;  // edi
780         *--stack = 0x54545454;  // esp - NOT POPED
781         *--stack = 0x51515151;  // esi
782         *--stack = 0xB4B4B4B4;  // ebp
783         //Individual PUSHs
784         *--stack = SS;  // ds
785         *--stack = SS;  // es
786         *--stack = SS;  // fs
787         *--stack = SS;  // gs
788         
789         __asm__ __volatile__ (
790         "mov %%eax,%%esp;\n\t"  // Set stack pointer
791         "pop %%gs;\n\t"
792         "pop %%fs;\n\t"
793         "pop %%es;\n\t"
794         "pop %%ds;\n\t"
795         "popa;\n\t"
796         "iret;\n\t" : : "a" (stack));
797         for(;;);
798 }
799
800 /**
801  * \fn int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
802  * \brief Demotes a process to a lower permission level
803  * \param Err   Pointer to user's errno
804  * \param Dest  New Permission Level
805  * \param Regs  Pointer to user's register structure
806  */
807 int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
808 {
809          int    cpl = Regs->cs & 3;
810         // Sanity Check
811         if(Dest > 3 || Dest < 0) {
812                 *Err = -EINVAL;
813                 return -1;
814         }
815         
816         // Permission Check
817         if(cpl > Dest) {
818                 *Err = -EACCES;
819                 return -1;
820         }
821         
822         // Change the Segment Registers
823         Regs->cs = (((Dest+1)<<4) | Dest) - 8;
824         Regs->ss = ((Dest+1)<<4) | Dest;
825         // Check if the GP Segs are GDT, then change them
826         if(!(Regs->ds & 4))     Regs->ds = ((Dest+1)<<4) | Dest;
827         if(!(Regs->es & 4))     Regs->es = ((Dest+1)<<4) | Dest;
828         if(!(Regs->fs & 4))     Regs->fs = ((Dest+1)<<4) | Dest;
829         if(!(Regs->gs & 4))     Regs->gs = ((Dest+1)<<4) | Dest;
830         
831         return 0;
832 }
833
834 /**
835  * \brief Calls a signal handler in user mode
836  * \note Used for signals
837  */
838 void Proc_CallFaultHandler(tThread *Thread)
839 {
840         // Rewinds the stack and calls the user function
841         // Never returns
842         Proc_ReturnToUser( Thread->FaultHandler, Thread->CurFaultNum, Thread->KernelStack );
843         for(;;);
844 }
845
846 void Proc_DumpThreadCPUState(tThread *Thread)
847 {
848         if( Thread->CurCPU > -1 )
849         {
850                  int    maxBacktraceDistance = 6;
851                 tRegs   *regs = NULL;
852                 Uint32  *stack;
853                 
854                 if( Thread->CurCPU != GetCPUNum() ) {
855                         Log("  Currently running");
856                         return ;
857                 }
858                 
859                 // Backtrace to find the IRQ entrypoint
860                 // - This will usually only be called by an IRQ, so this should
861                 //   work
862                 __asm__ __volatile__ ("mov %%ebp, %0" : "=r" (stack));
863                 while( maxBacktraceDistance -- )
864                 {
865                         // [ebp] = oldEbp
866                         // [ebp+4] = retaddr
867                         
868                         if( stack[1] == (tVAddr)&IRQCommon_handled ) {
869                                 regs = (void*)stack[2];
870                                 break;
871                         }
872                         
873                         stack = (void*)stack[0];
874                 }
875                 
876                 if( !regs ) {
877                         Log("  Unable to find IRQ Entry");
878                         return ;
879                 }
880                 
881                 Log("  at %04x:%08x", regs->cs, regs->eip);
882                 return ;
883         }
884         
885         tVAddr  diffFromScheduler = Thread->SavedState.EIP - (tVAddr)SwitchTasks;
886         tVAddr  diffFromClone = Thread->SavedState.EIP - (tVAddr)Proc_CloneInt;
887         tVAddr  diffFromSpawn = Thread->SavedState.EIP - (tVAddr)NewTaskHeader;
888         
889         if( diffFromClone > 0 && diffFromClone < 40 )   // When I last checked, .newTask was at .+27
890         {
891                 Log("  Creating process");
892                 return ;
893         }
894         
895         if( diffFromSpawn == 0 )
896         {
897                 Log("  Creating thread");
898                 return ;
899         }
900         
901         if( diffFromScheduler > 0 && diffFromScheduler < 128 )  // When I last checked, GetEIP was at .+0x30
902         {
903                 // Scheduled out
904                 Log("  At %04x:%08x", Thread->SavedState.UserCS, Thread->SavedState.UserEIP);
905                 return ;
906         }
907         
908         Log("  Just created (unknown %p)", Thread->SavedState.EIP);
909 }
910
911 void Proc_Reschedule(void)
912 {
913         tThread *nextthread, *curthread;
914          int    cpu = GetCPUNum();
915
916         // TODO: Wait for the lock?
917         if(IS_LOCKED(&glThreadListLock))        return;
918         
919         curthread = Proc_GetCurThread();
920
921         nextthread = Threads_GetNextToRun(cpu, curthread);
922
923         if(!nextthread || nextthread == curthread)
924                 return ;
925
926         #if DEBUG_TRACE_SWITCH
927         // HACK: Ignores switches to the idle threads
928         if( nextthread->TID == 0 || nextthread->TID > giNumCPUs )
929         {
930                 LogF("\nSwitching CPU %i to %p (%i %s) - CR3 = 0x%x, EIP = %p, ESP = %p\n",
931                         GetCPUNum(),
932                         nextthread, nextthread->TID, nextthread->ThreadName,
933                         nextthread->Process->MemState.CR3,
934                         nextthread->SavedState.EIP,
935                         nextthread->SavedState.ESP
936                         );
937                 LogF("OldCR3 = %P\n", curthread->Process->MemState.CR3);
938         }
939         #endif
940
941         // Update CPU state
942         gaCPUs[cpu].Current = nextthread;
943         gaCPUs[cpu].LastTimerThread = NULL;
944         gTSSs[cpu].ESP0 = nextthread->KernelStack-4;
945         __asm__ __volatile__("mov %0, %%db0\n\t" : : "r"(nextthread) );
946
947         // Save FPU/MMX/XMM/SSE state
948         if( curthread && curthread->SavedState.SSE )
949         {
950                 Proc_SaveSSE( ((Uint)curthread->SavedState.SSE + 0xF) & ~0xF );
951                 curthread->SavedState.bSSEModified = 0;
952                 Proc_DisableSSE();
953         }
954
955         if( curthread )
956         {
957                 SwitchTasks(
958                         nextthread->SavedState.ESP, &curthread->SavedState.ESP,
959                         nextthread->SavedState.EIP, &curthread->SavedState.EIP,
960                         nextthread->Process->MemState.CR3
961                         );
962         }
963         else
964         {
965                 SwitchTasks(
966                         nextthread->SavedState.ESP, 0,
967                         nextthread->SavedState.EIP, 0,
968                         nextthread->Process->MemState.CR3
969                         );
970         }
971
972         return ;
973 }
974
975 /**
976  * \fn void Proc_Scheduler(int CPU)
977  * \brief Swap current thread and clears dead threads
978  */
979 void Proc_Scheduler(int CPU)
980 {
981         #if USE_MP
982         if( GetCPUNum() )
983                 gpMP_LocalAPIC->EOI.Val = 0;
984         else
985         #endif
986                 outb(0x20, 0x20);
987         __asm__ __volatile__ ("sti");   
988
989         gaCPUs[CPU].LastTimerThread = gaCPUs[CPU].Current;
990         // Call the timer update code
991         Timer_CallTimers();
992
993         // If two ticks happen within the same task, and it's not an idle task, swap
994         if( gaCPUs[CPU].Current->TID > giNumCPUs && gaCPUs[CPU].Current == gaCPUs[CPU].LastTimerThread )
995         {
996                 Proc_Reschedule();
997         }
998 }
999
1000 // === EXPORTS ===
1001 EXPORT(Proc_SpawnWorker);

UCC git Repository :: git.ucc.asn.au