Merge branch 'master' of github.com:thepowersgang/acess2
[tpg/acess2.git] / KernelLand / Kernel / arch / x86 / proc.c
1 /*
2  * AcessOS Microkernel Version
3  * proc.c
4  */
5 #include <acess.h>
6 #include <threads.h>
7 #include <proc.h>
8 #include <desctab.h>
9 #include <mm_virt.h>
10 #include <errno.h>
11 #if USE_MP
12 # include <mp.h>
13 #endif
14 #include <hal_proc.h>
15 #include <arch_int.h>
16
17 // === FLAGS ===
18 #define DEBUG_TRACE_SWITCH      0
19 #define DEBUG_DISABLE_DOUBLEFAULT       1
20 #define DEBUG_VERY_SLOW_PERIOD  0
21 #define DEBUG_NOPREEMPT 1
22
23 // === CONSTANTS ===
24 // Base is 1193182
25 #define TIMER_BASE      1193182
26 #if DEBUG_VERY_SLOW_PERIOD
27 # define TIMER_DIVISOR  1193    //~10Hz switch, with 10 quantum = 1s per thread
28 #else
29 # define TIMER_DIVISOR  11932   //~100Hz
30 #endif
31
32 // === TYPES ===
33 typedef struct sCPU
34 {
35         Uint8   APICID;
36         Uint8   State;  // 0: Unavaliable, 1: Idle, 2: Active
37         Uint16  Resvd;
38         tThread *Current;
39         tThread *LastTimerThread;       // Used to do preeemption
40 }       tCPU;
41
42 // === IMPORTS ===
43 extern tGDT     gGDT[];
44 extern tIDT     gIDT[];
45 extern void     APWait(void);   // 16-bit AP pause code
46 extern void     APStartup(void);        // 16-bit AP startup code
47 extern Uint     GetEIP(void);   // start.asm
48 extern Uint     GetEIP_Sched(void);     // proc.asm
49 extern void     NewTaskHeader(tThread *Thread, void *Fcn, int nArgs, ...);      // Actually takes cdecl args
50 extern Uint     Proc_CloneInt(Uint *ESP, Uint32 *CR3, int bNoUserClone);
51 extern Uint32   gaInitPageDir[1024];    // start.asm
52 extern char     Kernel_Stack_Top[];
53 extern int      giNumCPUs;
54 extern int      giNextTID;
55 extern tThread  gThreadZero;
56 extern tProcess gProcessZero;
57 extern void     Isr8(void);     // Double Fault
58 extern void     Proc_ReturnToUser(tVAddr Handler, Uint Argument, tVAddr KernelStack);
59 extern char     scheduler_return[];     // Return address in SchedulerBase
60 extern char     IRQCommon[];    // Common IRQ handler code
61 extern char     IRQCommon_handled[];    // IRQCommon call return location
62 extern char     GetEIP_Sched_ret[];     // GetEIP call return location
63 extern void     SwitchTasks(Uint NewSP, Uint *OldSP, Uint NewIP, Uint *OldIO, Uint CR3);
64 extern void     Proc_InitialiseSSE(void);
65 extern void     Proc_SaveSSE(Uint DestPtr);
66 extern void     Proc_DisableSSE(void);
67
68 // === PROTOTYPES ===
69 //void  ArchThreads_Init(void);
70 #if USE_MP
71 void    MP_StartAP(int CPU);
72 void    MP_SendIPIVector(int CPU, Uint8 Vector);
73 void    MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode);
74 #endif
75 void    Proc_IdleThread(void *Ptr);
76 //void  Proc_Start(void);
77 //tThread       *Proc_GetCurThread(void);
78 void    Proc_ChangeStack(void);
79 // int  Proc_NewKThread(void (*Fcn)(void*), void *Data);
80 // int  Proc_Clone(Uint *Err, Uint Flags);
81 Uint    Proc_MakeUserStack(void);
82 //void  Proc_StartUser(Uint Entrypoint, Uint *Bases, int ArgC, char **ArgV, char **EnvP, int DataSize);
83 void    Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP) NORETURN;
84  int    Proc_Demote(Uint *Err, int Dest, tRegs *Regs);
85 //void  Proc_CallFaultHandler(tThread *Thread);
86 //void  Proc_DumpThreadCPUState(tThread *Thread);
87 void    Proc_Scheduler(int CPU);
88
89 // === GLOBALS ===
90 // --- Multiprocessing ---
91 #if USE_MP
92 volatile int    giNumInitingCPUs = 0;
93 tMPInfo *gMPFloatPtr = NULL;
94 volatile Uint32 giMP_TimerCount;        // Start Count for Local APIC Timer
95 tAPIC   *gpMP_LocalAPIC = NULL;
96 Uint8   gaAPIC_to_CPU[256] = {0};
97  int    giProc_BootProcessorID = 0;
98 tTSS    gaTSSs[MAX_CPUS];       // TSS Array
99 #endif
100 tCPU    gaCPUs[MAX_CPUS] = {
101         {.Current = &gThreadZero}
102         };
103 tTSS    *gTSSs = NULL;  // Pointer to TSS array
104 tTSS    gTSS0 = {0};
105 // --- Error Recovery ---
106 char    gaDoubleFaultStack[1024] __attribute__ ((section(".padata")));
107 tTSS    gDoubleFault_TSS = {
108         .ESP0 = (Uint)&gaDoubleFaultStack[1024],
109         .SS0 = 0x10,
110         .CR3 = (Uint)gaInitPageDir - KERNEL_BASE,
111         .EIP = (Uint)Isr8,
112         .ESP = (Uint)&gaDoubleFaultStack[1024],
113         .CS = 0x08,     .SS = 0x10,
114         .DS = 0x10,     .ES = 0x10,
115         .FS = 0x10,     .GS = 0x10,
116 };
117
118 // === CODE ===
119 /**
120  * \fn void ArchThreads_Init(void)
121  * \brief Starts the process scheduler
122  */
123 void ArchThreads_Init(void)
124 {
125         Uint    pos = 0;
126         
127         #if USE_MP
128         tMPTable        *mptable;
129         
130         // Mark BSP as active
131         gaCPUs[0].State = 2;
132         
133         // -- Initialise Multiprocessing
134         // Find MP Floating Table
135         // - EBDA/Last 1Kib (640KiB)
136         for(pos = KERNEL_BASE|0x9F000; pos < (KERNEL_BASE|0xA0000); pos += 16) {
137                 if( *(Uint*)(pos) == MPPTR_IDENT ) {
138                         Log("Possible %p", pos);
139                         if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
140                         gMPFloatPtr = (void*)pos;
141                         break;
142                 }
143         }
144         // - Last KiB (512KiB base mem)
145         if(!gMPFloatPtr) {
146                 for(pos = KERNEL_BASE|0x7F000; pos < (KERNEL_BASE|0x80000); pos += 16) {
147                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
148                                 Log("Possible %p", pos);
149                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
150                                 gMPFloatPtr = (void*)pos;
151                                 break;
152                         }
153                 }
154         }
155         // - BIOS ROM
156         if(!gMPFloatPtr) {
157                 for(pos = KERNEL_BASE|0xE0000; pos < (KERNEL_BASE|0x100000); pos += 16) {
158                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
159                                 Log("Possible %p", pos);
160                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
161                                 gMPFloatPtr = (void*)pos;
162                                 break;
163                         }
164                 }
165         }
166         
167         // If the MP Table Exists, parse it
168         if(gMPFloatPtr)
169         {
170                  int    i;
171                 tMPTable_Ent    *ents;
172                 #if DUMP_MP_TABLE
173                 Log("gMPFloatPtr = %p", gMPFloatPtr);
174                 Log("*gMPFloatPtr = {");
175                 Log("\t.Sig = 0x%08x", gMPFloatPtr->Sig);
176                 Log("\t.MPConfig = 0x%08x", gMPFloatPtr->MPConfig);
177                 Log("\t.Length = 0x%02x", gMPFloatPtr->Length);
178                 Log("\t.Version = 0x%02x", gMPFloatPtr->Version);
179                 Log("\t.Checksum = 0x%02x", gMPFloatPtr->Checksum);
180                 Log("\t.Features = [0x%02x,0x%02x,0x%02x,0x%02x,0x%02x]",
181                         gMPFloatPtr->Features[0],       gMPFloatPtr->Features[1],
182                         gMPFloatPtr->Features[2],       gMPFloatPtr->Features[3],
183                         gMPFloatPtr->Features[4]
184                         );
185                 Log("}");
186                 #endif          
187
188                 mptable = (void*)( KERNEL_BASE|gMPFloatPtr->MPConfig );
189                 #if DUMP_MP_TABLE
190                 Log("mptable = %p", mptable);
191                 Log("*mptable = {");
192                 Log("\t.Sig = 0x%08x", mptable->Sig);
193                 Log("\t.BaseTableLength = 0x%04x", mptable->BaseTableLength);
194                 Log("\t.SpecRev = 0x%02x", mptable->SpecRev);
195                 Log("\t.Checksum = 0x%02x", mptable->Checksum);
196                 Log("\t.OEMID = '%8c'", mptable->OemID);
197                 Log("\t.ProductID = '%8c'", mptable->ProductID);
198                 Log("\t.OEMTablePtr = %p'", mptable->OEMTablePtr);
199                 Log("\t.OEMTableSize = 0x%04x", mptable->OEMTableSize);
200                 Log("\t.EntryCount = 0x%04x", mptable->EntryCount);
201                 Log("\t.LocalAPICMemMap = 0x%08x", mptable->LocalAPICMemMap);
202                 Log("\t.ExtendedTableLen = 0x%04x", mptable->ExtendedTableLen);
203                 Log("\t.ExtendedTableChecksum = 0x%02x", mptable->ExtendedTableChecksum);
204                 Log("}");
205                 #endif
206                 
207                 gpMP_LocalAPIC = (void*)MM_MapHWPages(mptable->LocalAPICMemMap, 1);
208                 
209                 ents = mptable->Entries;
210                 giNumCPUs = 0;
211                 
212                 for( i = 0; i < mptable->EntryCount; i ++ )
213                 {
214                          int    entSize = 0;
215                         switch( ents->Type )
216                         {
217                         case 0: // Processor
218                                 entSize = 20;
219                                 #if DUMP_MP_TABLE
220                                 Log("%i: Processor", i);
221                                 Log("\t.APICID = %i", ents->Proc.APICID);
222                                 Log("\t.APICVer = 0x%02x", ents->Proc.APICVer);
223                                 Log("\t.CPUFlags = 0x%02x", ents->Proc.CPUFlags);
224                                 Log("\t.CPUSignature = 0x%08x", ents->Proc.CPUSignature);
225                                 Log("\t.FeatureFlags = 0x%08x", ents->Proc.FeatureFlags);
226                                 #endif
227                                 
228                                 if( !(ents->Proc.CPUFlags & 1) ) {
229                                         Log("DISABLED");
230                                         break;
231                                 }
232                                 
233                                 // Check if there is too many processors
234                                 if(giNumCPUs >= MAX_CPUS) {
235                                         giNumCPUs ++;   // If `giNumCPUs` > MAX_CPUS later, it will be clipped
236                                         break;
237                                 }
238                                 
239                                 // Initialise CPU Info
240                                 gaAPIC_to_CPU[ents->Proc.APICID] = giNumCPUs;
241                                 gaCPUs[giNumCPUs].APICID = ents->Proc.APICID;
242                                 gaCPUs[giNumCPUs].State = 0;
243                                 giNumCPUs ++;
244                                 
245                                 // Set BSP Variable
246                                 if( ents->Proc.CPUFlags & 2 ) {
247                                         giProc_BootProcessorID = giNumCPUs-1;
248                                 }
249                                 
250                                 break;
251                         
252                         #if DUMP_MP_TABLE >= 2
253                         case 1: // Bus
254                                 entSize = 8;
255                                 Log("%i: Bus", i);
256                                 Log("\t.ID = %i", ents->Bus.ID);
257                                 Log("\t.TypeString = '%6C'", ents->Bus.TypeString);
258                                 break;
259                         case 2: // I/O APIC
260                                 entSize = 8;
261                                 Log("%i: I/O APIC", i);
262                                 Log("\t.ID = %i", ents->IOAPIC.ID);
263                                 Log("\t.Version = 0x%02x", ents->IOAPIC.Version);
264                                 Log("\t.Flags = 0x%02x", ents->IOAPIC.Flags);
265                                 Log("\t.Addr = 0x%08x", ents->IOAPIC.Addr);
266                                 break;
267                         case 3: // I/O Interrupt Assignment
268                                 entSize = 8;
269                                 Log("%i: I/O Interrupt Assignment", i);
270                                 Log("\t.IntType = %i", ents->IOInt.IntType);
271                                 Log("\t.Flags = 0x%04x", ents->IOInt.Flags);
272                                 Log("\t.SourceBusID = 0x%02x", ents->IOInt.SourceBusID);
273                                 Log("\t.SourceBusIRQ = 0x%02x", ents->IOInt.SourceBusIRQ);
274                                 Log("\t.DestAPICID = 0x%02x", ents->IOInt.DestAPICID);
275                                 Log("\t.DestAPICIRQ = 0x%02x", ents->IOInt.DestAPICIRQ);
276                                 break;
277                         case 4: // Local Interrupt Assignment
278                                 entSize = 8;
279                                 Log("%i: Local Interrupt Assignment", i);
280                                 Log("\t.IntType = %i", ents->LocalInt.IntType);
281                                 Log("\t.Flags = 0x%04x", ents->LocalInt.Flags);
282                                 Log("\t.SourceBusID = 0x%02x", ents->LocalInt.SourceBusID);
283                                 Log("\t.SourceBusIRQ = 0x%02x", ents->LocalInt.SourceBusIRQ);
284                                 Log("\t.DestLocalAPICID = 0x%02x", ents->LocalInt.DestLocalAPICID);
285                                 Log("\t.DestLocalAPICIRQ = 0x%02x", ents->LocalInt.DestLocalAPICIRQ);
286                                 break;
287                         default:
288                                 Log("%i: Unknown (%i)", i, ents->Type);
289                                 break;
290                         #endif
291                         }
292                         ents = (void*)( (Uint)ents + entSize );
293                 }
294                 
295                 if( giNumCPUs > MAX_CPUS ) {
296                         Warning("Too many CPUs detected (%i), only using %i of them", giNumCPUs, MAX_CPUS);
297                         giNumCPUs = MAX_CPUS;
298                 }
299                 gTSSs = gaTSSs;
300         }
301         else {
302                 Log("No MP Table was found, assuming uniprocessor\n");
303                 giNumCPUs = 1;
304                 gTSSs = &gTSS0;
305         }
306         #else
307         giNumCPUs = 1;
308         gTSSs = &gTSS0;
309         #endif
310         
311         #if !DEBUG_DISABLE_DOUBLEFAULT
312         // Initialise Double Fault TSS
313         gGDT[5].BaseLow = (Uint)&gDoubleFault_TSS & 0xFFFF;
314         gGDT[5].BaseMid = (Uint)&gDoubleFault_TSS >> 16;
315         gGDT[5].BaseHi = (Uint)&gDoubleFault_TSS >> 24;
316         
317         // Set double fault IDT to use the new TSS
318         gIDT[8].OffsetLo = 0;
319         gIDT[8].CS = 5<<3;
320         gIDT[8].Flags = 0x8500;
321         gIDT[8].OffsetHi = 0;
322         #endif
323         
324         // Set timer frequency
325         outb(0x43, 0x34);       // Set Channel 0, Low/High, Rate Generator
326         outb(0x40, TIMER_DIVISOR&0xFF); // Low Byte of Divisor
327         outb(0x40, (TIMER_DIVISOR>>8)&0xFF);    // High Byte
328         
329         Log_Debug("Proc", "PIT Frequency %i.%03i Hz",
330                 TIMER_BASE/TIMER_DIVISOR,
331                 ((Uint64)TIMER_BASE*1000/TIMER_DIVISOR)%1000
332                 );
333         
334         #if USE_MP
335         // Get the count setting for APIC timer
336         Log("Determining APIC Count");
337         __asm__ __volatile__ ("sti");
338         while( giMP_TimerCount == 0 )   __asm__ __volatile__ ("hlt");
339         __asm__ __volatile__ ("cli");
340         Log("APIC Count %i", giMP_TimerCount);
341         {
342                 Uint64  freq = giMP_TimerCount;
343                 freq *= TIMER_BASE;
344                 freq /= TIMER_DIVISOR;
345                 if( (freq /= 1000) < 2*1000)
346                         Log("Bus Frequency %i KHz", freq);
347                 else if( (freq /= 1000) < 2*1000)
348                         Log("Bus Frequency %i MHz", freq);
349                 else if( (freq /= 1000) < 2*1000)
350                         Log("Bus Frequency %i GHz", freq);
351                 else
352                         Log("Bus Frequency %i THz", freq);
353         }
354         
355         // Initialise Normal TSS(s)
356         for(pos=0;pos<giNumCPUs;pos++)
357         {
358         #else
359         pos = 0;
360         #endif
361                 gTSSs[pos].SS0 = 0x10;
362                 gTSSs[pos].ESP0 = 0;    // Set properly by scheduler
363                 gGDT[6+pos].BaseLow = ((Uint)(&gTSSs[pos])) & 0xFFFF;
364                 gGDT[6+pos].BaseMid = ((Uint)(&gTSSs[pos]) >> 16) & 0xFFFF;
365                 gGDT[6+pos].BaseHi = ((Uint)(&gTSSs[pos])) >> 24;
366         #if USE_MP
367         }
368         #endif
369         
370         // Load the BSP's TSS
371         __asm__ __volatile__ ("ltr %%ax"::"a"(0x30));
372         // Set Current Thread and CPU Number in DR0 and DR1
373         __asm__ __volatile__ ("mov %0, %%db0"::"r"(&gThreadZero));
374         __asm__ __volatile__ ("mov %0, %%db1"::"r"(0));
375         
376         gaCPUs[0].Current = &gThreadZero;
377         gThreadZero.CurCPU = 0;
378         
379         gProcessZero.MemState.CR3 = (Uint)gaInitPageDir - KERNEL_BASE;
380         
381         // Create Per-Process Data Block
382         if( !MM_Allocate(MM_PPD_CFG) )
383         {
384                 Panic("OOM - No space for initial Per-Process Config");
385         }
386
387         // Initialise SSE support
388         Proc_InitialiseSSE();
389         
390         // Change Stacks
391         Proc_ChangeStack();
392 }
393
394 #if USE_MP
395 /**
396  * \brief Start an AP
397  */
398 void MP_StartAP(int CPU)
399 {
400         Log_Log("Proc", "Starting AP %i (APIC %i)", CPU, gaCPUs[CPU].APICID);
401         
402         // Set location of AP startup code and mark for a warm restart
403         *(Uint16*)(KERNEL_BASE|0x467) = (Uint)&APWait - (KERNEL_BASE|0xFFFF0);
404         *(Uint16*)(KERNEL_BASE|0x469) = 0xFFFF;
405         outb(0x70, 0x0F);       outb(0x71, 0x0A);       // Set warm reset flag
406         MP_SendIPI(gaCPUs[CPU].APICID, 0, 5);   // Init IPI
407         
408         // Delay
409         inb(0x80); inb(0x80); inb(0x80); inb(0x80);
410         
411         // TODO: Use a better address, preferably registered with the MM
412         // - MM_AllocDMA mabye?
413         // Create a far jump
414         *(Uint8*)(KERNEL_BASE|0x11000) = 0xEA;  // Far JMP
415         *(Uint16*)(KERNEL_BASE|0x11001) = (Uint)&APStartup - (KERNEL_BASE|0xFFFF0);     // IP
416         *(Uint16*)(KERNEL_BASE|0x11003) = 0xFFFF;       // CS
417         // Send a Startup-IPI to make the CPU execute at 0x11000 (which we
418         // just filled)
419         MP_SendIPI(gaCPUs[CPU].APICID, 0x11, 6);        // StartupIPI
420         
421         giNumInitingCPUs ++;
422 }
423
424 void MP_SendIPIVector(int CPU, Uint8 Vector)
425 {
426         MP_SendIPI(gaCPUs[CPU].APICID, Vector, 0);
427 }
428
429 /**
430  * \brief Send an Inter-Processor Interrupt
431  * \param APICID        Processor's Local APIC ID
432  * \param Vector        Argument of some kind
433  * \param DeliveryMode  Type of signal
434  * \note 3A 10.5 "APIC/Handling Local Interrupts"
435  */
436 void MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode)
437 {
438         Uint32  val;
439         
440         // Hi
441         val = (Uint)APICID << 24;
442 //      Log("%p = 0x%08x", &gpMP_LocalAPIC->ICR[1], val);
443         gpMP_LocalAPIC->ICR[1].Val = val;
444         // Low (and send)
445         val = ((DeliveryMode & 7) << 8) | (Vector & 0xFF);
446 //      Log("%p = 0x%08x", &gpMP_LocalAPIC->ICR[0], val);
447         gpMP_LocalAPIC->ICR[0].Val = val;
448 }
449 #endif
450
451 void Proc_IdleThread(void *Ptr)
452 {
453         tCPU    *cpu = &gaCPUs[GetCPUNum()];
454         cpu->Current->ThreadName = strdup("Idle Thread");
455         Threads_SetPriority( cpu->Current, -1 );        // Never called randomly
456         cpu->Current->Quantum = 1;      // 1 slice quantum
457         for(;;) {
458                 __asm__ __volatile__ ("sti");   // Make sure interrupts are enabled
459                 __asm__ __volatile__ ("hlt");   // Make sure interrupts are enabled
460                 Proc_Reschedule();
461         }
462 }
463
464 /**
465  * \fn void Proc_Start(void)
466  * \brief Start process scheduler
467  */
468 void Proc_Start(void)
469 {
470         #if USE_MP
471          int    i;
472         #endif
473         
474         #if USE_MP
475         // Start APs
476         for( i = 0; i < giNumCPUs; i ++ )
477         {
478                 if(i)   gaCPUs[i].Current = NULL;
479                 
480                 // Create Idle Task
481                 Proc_NewKThread(Proc_IdleThread, &gaCPUs[i]);
482                 
483                 // Start the AP
484                 if( i != giProc_BootProcessorID ) {
485                         MP_StartAP( i );
486                 }
487         }
488         
489         // BSP still should run the current task
490         gaCPUs[0].Current = &gThreadZero;
491         
492         // Start interrupts and wait for APs to come up
493         Log_Debug("Proc", "Waiting for APs to come up");
494         __asm__ __volatile__ ("sti");
495         while( giNumInitingCPUs )       __asm__ __volatile__ ("hlt");
496         #else
497         // Create Idle Task
498         Proc_NewKThread(Proc_IdleThread, &gaCPUs[0]);
499         
500         // Set current task
501         gaCPUs[0].Current = &gThreadZero;
502
503         // Start Interrupts (and hence scheduler)
504         __asm__ __volatile__("sti");
505         #endif
506         MM_FinishVirtualInit();
507 }
508
509 /**
510  * \fn tThread *Proc_GetCurThread(void)
511  * \brief Gets the current thread
512  */
513 tThread *Proc_GetCurThread(void)
514 {
515         #if USE_MP
516         return gaCPUs[ GetCPUNum() ].Current;
517         #else
518         return gaCPUs[ 0 ].Current;
519         #endif
520 }
521
522 /**
523  * \fn void Proc_ChangeStack(void)
524  * \brief Swaps the current stack for a new one (in the proper stack reigon)
525  */
526 void Proc_ChangeStack(void)
527 {
528         Uint    esp, ebp;
529         Uint    tmpEbp, oldEsp;
530         Uint    curBase, newBase;
531
532         __asm__ __volatile__ ("mov %%esp, %0":"=r"(esp));
533         __asm__ __volatile__ ("mov %%ebp, %0":"=r"(ebp));
534
535         oldEsp = esp;
536
537         // Create new KStack
538         newBase = MM_NewKStack();
539         // Check for errors
540         if(newBase == 0) {
541                 Panic("What the?? Unable to allocate space for initial kernel stack");
542                 return;
543         }
544
545         curBase = (Uint)&Kernel_Stack_Top;
546         
547         LOG("curBase = 0x%x, newBase = 0x%x", curBase, newBase);
548
549         // Get ESP as a used size
550         esp = curBase - esp;
551         LOG("memcpy( %p, %p, 0x%x )", (void*)(newBase - esp), (void*)(curBase - esp), esp );
552         // Copy used stack
553         memcpy( (void*)(newBase - esp), (void*)(curBase - esp), esp );
554         // Get ESP as an offset in the new stack
555         esp = newBase - esp;
556         // Adjust EBP
557         ebp = newBase - (curBase - ebp);
558
559         // Repair EBPs & Stack Addresses
560         // Catches arguments also, but may trash stack-address-like values
561         for(tmpEbp = esp; tmpEbp < newBase; tmpEbp += 4)
562         {
563                 if(oldEsp < *(Uint*)tmpEbp && *(Uint*)tmpEbp < curBase)
564                         *(Uint*)tmpEbp += newBase - curBase;
565         }
566         
567         Proc_GetCurThread()->KernelStack = newBase;
568         
569         __asm__ __volatile__ ("mov %0, %%esp"::"r"(esp));
570         __asm__ __volatile__ ("mov %0, %%ebp"::"r"(ebp));
571 }
572
573 void Proc_ClearProcess(tProcess *Process)
574 {
575         MM_ClearSpace(Process->MemState.CR3);
576 }
577
578 void Proc_ClearThread(tThread *Thread)
579 {
580         if(Thread->SavedState.SSE) {
581                 free(Thread->SavedState.SSE);
582                 Thread->SavedState.SSE = NULL;
583         }
584 }
585
586 tTID Proc_NewKThread(void (*Fcn)(void*), void *Data)
587 {
588         Uint    esp;
589         tThread *newThread;
590         
591         newThread = Threads_CloneTCB(0);
592         if(!newThread)  return -1;
593         
594         // Create new KStack
595         newThread->KernelStack = MM_NewKStack();
596         // Check for errors
597         if(newThread->KernelStack == 0) {
598                 free(newThread);
599                 return -1;
600         }
601
602         esp = newThread->KernelStack;
603         *(Uint*)(esp-=4) = (Uint)Data;  // Data (shadowed)
604         *(Uint*)(esp-=4) = 1;   // Number of params
605         *(Uint*)(esp-=4) = (Uint)Fcn;   // Function to call
606         *(Uint*)(esp-=4) = (Uint)newThread;     // Thread ID
607         
608         newThread->SavedState.ESP = esp;
609         newThread->SavedState.EIP = (Uint)&NewTaskHeader;
610         newThread->SavedState.SSE = NULL;
611 //      Log("New (KThread) %p, esp = %p", newThread->SavedState.EIP, newThread->SavedState.ESP);
612         
613 //      MAGIC_BREAK();  
614         Threads_AddActive(newThread);
615
616         return newThread->TID;
617 }
618
619 /**
620  * \fn int Proc_Clone(Uint *Err, Uint Flags)
621  * \brief Clone the current process
622  */
623 tPID Proc_Clone(Uint Flags)
624 {
625         tThread *newThread;
626         tThread *cur = Proc_GetCurThread();
627         Uint    eip;
628
629         // Sanity, please
630         if( !(Flags & CLONE_VM) ) {
631                 Log_Error("Proc", "Proc_Clone: Don't leave CLONE_VM unset, use Proc_NewKThread instead");
632                 return -1;
633         }
634         
635         // New thread
636         newThread = Threads_CloneTCB(Flags);
637         if(!newThread)  return -1;
638
639         newThread->KernelStack = cur->KernelStack;
640
641         // Clone state
642         eip = Proc_CloneInt(&newThread->SavedState.ESP, &newThread->Process->MemState.CR3, Flags & CLONE_NOUSER);
643         if( eip == 0 ) {
644                 return 0;
645         }
646         newThread->SavedState.EIP = eip;
647         newThread->SavedState.SSE = NULL;
648         newThread->SavedState.bSSEModified = 0;
649         
650         // Check for errors
651         if( newThread->Process->MemState.CR3 == 0 ) {
652                 Log_Error("Proc", "Proc_Clone: MM_Clone failed");
653                 Threads_Delete(newThread);
654                 return -1;
655         }
656
657         // Add the new thread to the run queue
658         Threads_AddActive(newThread);
659         return newThread->TID;
660 }
661
662 /**
663  * \fn int Proc_SpawnWorker(void)
664  * \brief Spawns a new worker thread
665  */
666 tThread *Proc_SpawnWorker(void (*Fcn)(void*), void *Data)
667 {
668         tThread *new;
669         Uint    stack_contents[4];
670         
671         // Create new thread
672         new = Threads_CloneThreadZero();
673         if(!new) {
674                 Warning("Proc_SpawnWorker - Out of heap space!\n");
675                 return NULL;
676         }
677
678         // Create the stack contents
679         stack_contents[3] = (Uint)Data;
680         stack_contents[2] = 1;
681         stack_contents[1] = (Uint)Fcn;
682         stack_contents[0] = (Uint)new;
683         
684         // Create a new worker stack (in PID0's address space)
685         new->KernelStack = MM_NewWorkerStack(stack_contents, sizeof(stack_contents));
686
687         // Save core machine state
688         new->SavedState.ESP = new->KernelStack - sizeof(stack_contents);
689         new->SavedState.EIP = (Uint)NewTaskHeader;
690         new->SavedState.SSE = NULL;
691         new->SavedState.bSSEModified = 0;
692         
693         // Mark as active
694         new->Status = THREAD_STAT_PREINIT;
695         Threads_AddActive( new );
696         
697         return new;
698 }
699
700 /**
701  * \fn Uint Proc_MakeUserStack(void)
702  * \brief Creates a new user stack
703  */
704 Uint Proc_MakeUserStack(void)
705 {
706          int    i;
707         Uint    base = USER_STACK_TOP - USER_STACK_SZ;
708         
709         // Check Prospective Space
710         for( i = USER_STACK_SZ >> 12; i--; )
711                 if( MM_GetPhysAddr( (void*)(base + (i<<12)) ) != 0 )
712                         break;
713         
714         if(i != -1)     return 0;
715         
716         // Allocate Stack - Allocate incrementally to clean up MM_Dump output
717         for( i = 0; i < USER_STACK_SZ/0x1000; i++ )
718         {
719                 if( !MM_Allocate( base + (i<<12) ) )
720                 {
721                         Warning("OOM: Proc_MakeUserStack");
722                         return 0;
723                 }
724         }
725         
726         return base + USER_STACK_SZ;
727 }
728
729 void Proc_StartUser(Uint Entrypoint, Uint Base, int ArgC, const char **ArgV, int DataSize)
730 {
731         Uint    *stack;
732          int    i;
733         const char      **envp = NULL;
734         Uint16  ss, cs;
735         
736         // Copy data to the user stack and free original buffer
737         stack = (void*)Proc_MakeUserStack();
738         stack -= (DataSize+sizeof(*stack)-1)/sizeof(*stack);
739         memcpy( stack, ArgV, DataSize );
740         free(ArgV);
741         
742         // Adjust Arguments and environment
743         if( DataSize )
744         {
745                 Uint delta = (Uint)stack - (Uint)ArgV;
746                 ArgV = (const char**)stack;
747                 for( i = 0; ArgV[i]; i++ )      ArgV[i] += delta;
748                 envp = &ArgV[i+1];
749                 for( i = 0; envp[i]; i++ )      envp[i] += delta;
750         }
751         
752         // User Mode Segments
753         ss = 0x23;      cs = 0x1B;
754         
755         // Arguments
756         *--stack = (Uint)envp;
757         *--stack = (Uint)ArgV;
758         *--stack = (Uint)ArgC;
759         *--stack = Base;
760         
761         Proc_StartProcess(ss, (Uint)stack, 0x202, cs, Entrypoint);
762 }
763
764 void Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP)
765 {
766         Uint    *stack = (void*)Stack;
767         *--stack = SS;          //Stack Segment
768         *--stack = Stack;       //Stack Pointer
769         *--stack = Flags;       //EFLAGS (Resvd (0x2) and IF (0x20))
770         *--stack = CS;          //Code Segment
771         *--stack = IP;  //EIP
772         //PUSHAD
773         *--stack = 0xAAAAAAAA;  // eax
774         *--stack = 0xCCCCCCCC;  // ecx
775         *--stack = 0xDDDDDDDD;  // edx
776         *--stack = 0xBBBBBBBB;  // ebx
777         *--stack = 0xD1D1D1D1;  // edi
778         *--stack = 0x54545454;  // esp - NOT POPED
779         *--stack = 0x51515151;  // esi
780         *--stack = 0xB4B4B4B4;  // ebp
781         //Individual PUSHs
782         *--stack = SS;  // ds
783         *--stack = SS;  // es
784         *--stack = SS;  // fs
785         *--stack = SS;  // gs
786         
787         __asm__ __volatile__ (
788         "mov %%eax,%%esp;\n\t"  // Set stack pointer
789         "pop %%gs;\n\t"
790         "pop %%fs;\n\t"
791         "pop %%es;\n\t"
792         "pop %%ds;\n\t"
793         "popa;\n\t"
794         "iret;\n\t" : : "a" (stack));
795         for(;;);
796 }
797
798 /**
799  * \fn int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
800  * \brief Demotes a process to a lower permission level
801  * \param Err   Pointer to user's errno
802  * \param Dest  New Permission Level
803  * \param Regs  Pointer to user's register structure
804  */
805 int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
806 {
807          int    cpl = Regs->cs & 3;
808         // Sanity Check
809         if(Dest > 3 || Dest < 0) {
810                 *Err = -EINVAL;
811                 return -1;
812         }
813         
814         // Permission Check
815         if(cpl > Dest) {
816                 *Err = -EACCES;
817                 return -1;
818         }
819         
820         // Change the Segment Registers
821         Regs->cs = (((Dest+1)<<4) | Dest) - 8;
822         Regs->ss = ((Dest+1)<<4) | Dest;
823         // Check if the GP Segs are GDT, then change them
824         if(!(Regs->ds & 4))     Regs->ds = ((Dest+1)<<4) | Dest;
825         if(!(Regs->es & 4))     Regs->es = ((Dest+1)<<4) | Dest;
826         if(!(Regs->fs & 4))     Regs->fs = ((Dest+1)<<4) | Dest;
827         if(!(Regs->gs & 4))     Regs->gs = ((Dest+1)<<4) | Dest;
828         
829         return 0;
830 }
831
832 /**
833  * \brief Calls a signal handler in user mode
834  * \note Used for signals
835  */
836 void Proc_CallFaultHandler(tThread *Thread)
837 {
838         // Rewinds the stack and calls the user function
839         // Never returns
840         Proc_ReturnToUser( Thread->FaultHandler, Thread->CurFaultNum, Thread->KernelStack );
841         for(;;);
842 }
843
844 void Proc_DumpThreadCPUState(tThread *Thread)
845 {
846         if( Thread->CurCPU > -1 )
847         {
848                  int    maxBacktraceDistance = 6;
849                 tRegs   *regs = NULL;
850                 Uint32  *stack;
851                 
852                 if( Thread->CurCPU != GetCPUNum() ) {
853                         Log("  Currently running");
854                         return ;
855                 }
856                 
857                 // Backtrace to find the IRQ entrypoint
858                 // - This will usually only be called by an IRQ, so this should
859                 //   work
860                 __asm__ __volatile__ ("mov %%ebp, %0" : "=r" (stack));
861                 while( maxBacktraceDistance -- )
862                 {
863                         if( !CheckMem(stack, 8) ) {
864                                 regs = NULL;
865                                 break;
866                         }
867                         // [ebp] = oldEbp
868                         // [ebp+4] = retaddr
869                         
870                         if( stack[1] == (tVAddr)&IRQCommon_handled ) {
871                                 regs = (void*)stack[2];
872                                 break;
873                         }
874                         
875                         stack = (void*)stack[0];
876                 }
877                 
878                 if( !regs ) {
879                         Log("  Unable to find IRQ Entry");
880                         return ;
881                 }
882                 
883                 Log("  at %04x:%08x", regs->cs, regs->eip);
884                 return ;
885         }
886         
887         tVAddr  diffFromScheduler = Thread->SavedState.EIP - (tVAddr)SwitchTasks;
888         tVAddr  diffFromClone = Thread->SavedState.EIP - (tVAddr)Proc_CloneInt;
889         tVAddr  diffFromSpawn = Thread->SavedState.EIP - (tVAddr)NewTaskHeader;
890         
891         if( diffFromClone > 0 && diffFromClone < 40 )   // When I last checked, .newTask was at .+27
892         {
893                 Log("  Creating process");
894                 return ;
895         }
896         
897         if( diffFromSpawn == 0 )
898         {
899                 Log("  Creating thread");
900                 return ;
901         }
902         
903         if( diffFromScheduler > 0 && diffFromScheduler < 128 )  // When I last checked, GetEIP was at .+0x30
904         {
905                 // Scheduled out
906                 Log("  At %04x:%08x", Thread->SavedState.UserCS, Thread->SavedState.UserEIP);
907                 return ;
908         }
909         
910         Log("  Just created (unknown %p)", Thread->SavedState.EIP);
911 }
912
913 void Proc_Reschedule(void)
914 {
915         tThread *nextthread, *curthread;
916          int    cpu = GetCPUNum();
917
918         // TODO: Wait for the lock?
919         if(IS_LOCKED(&glThreadListLock))        return;
920         
921         curthread = Proc_GetCurThread();
922
923         nextthread = Threads_GetNextToRun(cpu, curthread);
924
925         if(!nextthread || nextthread == curthread)
926                 return ;
927
928         #if DEBUG_TRACE_SWITCH
929         // HACK: Ignores switches to the idle threads
930         if( nextthread->TID == 0 || nextthread->TID > giNumCPUs )
931         {
932                 LogF("\nSwitching CPU %i to %p (%i %s) - CR3 = 0x%x, EIP = %p, ESP = %p\n",
933                         GetCPUNum(),
934                         nextthread, nextthread->TID, nextthread->ThreadName,
935                         nextthread->Process->MemState.CR3,
936                         nextthread->SavedState.EIP,
937                         nextthread->SavedState.ESP
938                         );
939                 LogF("OldCR3 = %P\n", curthread->Process->MemState.CR3);
940         }
941         #endif
942
943         // Update CPU state
944         gaCPUs[cpu].Current = nextthread;
945         gaCPUs[cpu].LastTimerThread = NULL;
946         gTSSs[cpu].ESP0 = nextthread->KernelStack-4;
947         __asm__ __volatile__("mov %0, %%db0\n\t" : : "r"(nextthread) );
948
949         // Save FPU/MMX/XMM/SSE state
950         if( curthread && curthread->SavedState.SSE )
951         {
952                 Proc_SaveSSE( ((Uint)curthread->SavedState.SSE + 0xF) & ~0xF );
953                 curthread->SavedState.bSSEModified = 0;
954                 Proc_DisableSSE();
955         }
956
957         if( curthread )
958         {
959                 SwitchTasks(
960                         nextthread->SavedState.ESP, &curthread->SavedState.ESP,
961                         nextthread->SavedState.EIP, &curthread->SavedState.EIP,
962                         nextthread->Process->MemState.CR3
963                         );
964         }
965         else
966         {
967                 SwitchTasks(
968                         nextthread->SavedState.ESP, 0,
969                         nextthread->SavedState.EIP, 0,
970                         nextthread->Process->MemState.CR3
971                         );
972         }
973
974         return ;
975 }
976
977 /**
978  * \fn void Proc_Scheduler(int CPU)
979  * \brief Swap current thread and clears dead threads
980  */
981 void Proc_Scheduler(int CPU)
982 {
983         #if USE_MP
984         if( GetCPUNum() )
985                 gpMP_LocalAPIC->EOI.Val = 0;
986         else
987         #endif
988                 outb(0x20, 0x20);
989         __asm__ __volatile__ ("sti");   
990
991         // Call the timer update code
992         Timer_CallTimers();
993
994         #if !DEBUG_NOPREEMPT
995         // If two ticks happen within the same task, and it's not an idle task, swap
996         if( gaCPUs[CPU].Current->TID > giNumCPUs && gaCPUs[CPU].Current == gaCPUs[CPU].LastTimerThread )
997         {
998                 Proc_Reschedule();
999         }
1000         
1001         gaCPUs[CPU].LastTimerThread = gaCPUs[CPU].Current;
1002         #endif
1003 }
1004
1005 // === EXPORTS ===
1006 EXPORT(Proc_SpawnWorker);

UCC git Repository :: git.ucc.asn.au