Merge branch 'master' of git://localhost/acess2
[tpg/acess2.git] / KernelLand / Kernel / arch / x86_64 / proc.c
1 /*
2  * Acess2 x86_64 port
3  * proc.c
4  */
5 #include <acess.h>
6 #include <proc.h>
7 #include <threads.h>
8 #include <threads_int.h>
9 #include <desctab.h>
10 #include <mm_virt.h>
11 #include <errno.h>
12 #if USE_MP
13 # include <mp.h>
14 #endif
15 #include <arch_config.h>
16 #include <hal_proc.h>
17
18 // === FLAGS ===
19 #define DEBUG_TRACE_SWITCH      0
20 #define BREAK_ON_SWITCH         0       // Break into bochs debugger on a task switch
21
22 // === CONSTANTS ===
23
24 // === TYPES ===
25 typedef struct sCPU
26 {
27         Uint8   APICID;
28         Uint8   State;  // 0: Unavaliable, 1: Idle, 2: Active
29         Uint16  Resvd;
30         tThread *Current;
31         tThread *IdleThread;
32 }       tCPU;
33
34 // === IMPORTS ===
35 extern tGDT     gGDT[];
36 extern void     APStartup(void);        // 16-bit AP startup code
37
38 extern Uint     GetRIP(void);   // start.asm
39 extern Uint     SaveState(Uint *RSP, Uint *Regs);
40 extern Uint     Proc_CloneInt(Uint *RSP, Uint *CR3);
41 extern void     NewTaskHeader(void);    // Actually takes cdecl args
42 extern void     Proc_InitialiseSSE(void);
43 extern void     Proc_SaveSSE(Uint DestPtr);
44 extern void     Proc_DisableSSE(void);
45
46 extern Uint64   gInitialPML4[512];      // start.asm
47 extern int      giNumCPUs;
48 extern int      giNextTID;
49 extern int      giTotalTickets;
50 extern int      giNumActiveThreads;
51 extern tThread  gThreadZero;
52 extern tProcess gProcessZero;
53 extern void     Threads_Dump(void);
54 extern void     Proc_ReturnToUser(tVAddr Handler, tVAddr KStackTop, int Argument);
55 extern void     Time_UpdateTimestamp(void);
56 extern void     SwitchTasks(Uint NewSP, Uint *OldSP, Uint NewIP, Uint *OldIO, Uint CR3);
57
58 // === PROTOTYPES ===
59 //void  ArchThreads_Init(void);
60 #if USE_MP
61 void    MP_StartAP(int CPU);
62 void    MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode);
63 #endif
64 void    Proc_IdleTask(void *unused);
65 //void  Proc_Start(void);
66 //tThread       *Proc_GetCurThread(void);
67 // int  Proc_NewKThread(void (*Fcn)(void*), void *Data);
68 // int  Proc_Clone(Uint *Err, Uint Flags);
69 // int  Proc_SpawnWorker(void);
70 Uint    Proc_MakeUserStack(void);
71 //void  Proc_StartUser(Uint Entrypoint, Uint *Bases, int ArgC, char **ArgV, char **EnvP, int DataSize);
72 void    Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP) NORETURN;
73  int    Proc_Demote(Uint *Err, int Dest, tRegs *Regs);
74 //void  Proc_CallFaultHandler(tThread *Thread);
75 //void  Proc_DumpThreadCPUState(tThread *Thread);
76 //void  Proc_Reschedule(void);
77 void    Proc_Scheduler(int CPU, Uint RSP, Uint RIP);
78
79 // === GLOBALS ===
80 //!\brief Used by desctab.asm in SyscallStub
81 const int ci_offsetof_tThread_KernelStack = offsetof(tThread, KernelStack);
82 // --- Multiprocessing ---
83 #if USE_MP
84 volatile int    giNumInitingCPUs = 0;
85 tMPInfo *gMPFloatPtr = NULL;
86 tAPIC   *gpMP_LocalAPIC = NULL;
87 Uint8   gaAPIC_to_CPU[256] = {0};
88 #endif
89 tCPU    gaCPUs[MAX_CPUS] = {
90         {.Current = &gThreadZero}
91         };
92 tTSS    *gTSSs = NULL;
93 tTSS    gTSS0 = {0};
94 // --- Error Recovery ---
95 Uint32  gaDoubleFaultStack[1024];
96
97 // === CODE ===
98 /**
99  * \fn void ArchThreads_Init(void)
100  * \brief Starts the process scheduler
101  */
102 void ArchThreads_Init(void)
103 {
104         Uint    pos = 0;
105         
106         #if USE_MP
107         tMPTable        *mptable;
108         
109         // Mark BSP as active
110         gaCPUs[0].State = 2;
111         
112         // -- Initialise Multiprocessing
113         // Find MP Floating Table
114         // - EBDA/Last 1Kib (640KiB)
115         for(pos = KERNEL_BASE|0x9F000; pos < (KERNEL_BASE|0xA0000); pos += 16) {
116                 if( *(Uint*)(pos) == MPPTR_IDENT ) {
117                         Log("Possible %p", pos);
118                         if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
119                         gMPFloatPtr = (void*)pos;
120                         break;
121                 }
122         }
123         // - Last KiB (512KiB base mem)
124         if(!gMPFloatPtr) {
125                 for(pos = KERNEL_BASE|0x7F000; pos < (KERNEL_BASE|0x80000); pos += 16) {
126                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
127                                 Log("Possible %p", pos);
128                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
129                                 gMPFloatPtr = (void*)pos;
130                                 break;
131                         }
132                 }
133         }
134         // - BIOS ROM
135         if(!gMPFloatPtr) {
136                 for(pos = KERNEL_BASE|0xE0000; pos < (KERNEL_BASE|0x100000); pos += 16) {
137                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
138                                 Log("Possible %p", pos);
139                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
140                                 gMPFloatPtr = (void*)pos;
141                                 break;
142                         }
143                 }
144         }
145         
146         // If the MP Table Exists, parse it
147         if(gMPFloatPtr)
148         {
149                  int    i;
150                 tMPTable_Ent    *ents;
151                 Log("gMPFloatPtr = %p", gMPFloatPtr);
152                 Log("*gMPFloatPtr = {");
153                 Log("\t.Sig = 0x%08x", gMPFloatPtr->Sig);
154                 Log("\t.MPConfig = 0x%08x", gMPFloatPtr->MPConfig);
155                 Log("\t.Length = 0x%02x", gMPFloatPtr->Length);
156                 Log("\t.Version = 0x%02x", gMPFloatPtr->Version);
157                 Log("\t.Checksum = 0x%02x", gMPFloatPtr->Checksum);
158                 Log("\t.Features = [0x%02x,0x%02x,0x%02x,0x%02x,0x%02x]",
159                         gMPFloatPtr->Features[0],       gMPFloatPtr->Features[1],
160                         gMPFloatPtr->Features[2],       gMPFloatPtr->Features[3],
161                         gMPFloatPtr->Features[4]
162                         );
163                 Log("}");
164                 
165                 mptable = (void*)( KERNEL_BASE|gMPFloatPtr->MPConfig );
166                 Log("mptable = %p", mptable);
167                 Log("*mptable = {");
168                 Log("\t.Sig = 0x%08x", mptable->Sig);
169                 Log("\t.BaseTableLength = 0x%04x", mptable->BaseTableLength);
170                 Log("\t.SpecRev = 0x%02x", mptable->SpecRev);
171                 Log("\t.Checksum = 0x%02x", mptable->Checksum);
172                 Log("\t.OEMID = '%8c'", mptable->OemID);
173                 Log("\t.ProductID = '%8c'", mptable->ProductID);
174                 Log("\t.OEMTablePtr = %p'", mptable->OEMTablePtr);
175                 Log("\t.OEMTableSize = 0x%04x", mptable->OEMTableSize);
176                 Log("\t.EntryCount = 0x%04x", mptable->EntryCount);
177                 Log("\t.LocalAPICMemMap = 0x%08x", mptable->LocalAPICMemMap);
178                 Log("\t.ExtendedTableLen = 0x%04x", mptable->ExtendedTableLen);
179                 Log("\t.ExtendedTableChecksum = 0x%02x", mptable->ExtendedTableChecksum);
180                 Log("}");
181                 
182                 gpMP_LocalAPIC = (void*)MM_MapHWPage(mptable->LocalAPICMemMap, 1);
183                 
184                 ents = mptable->Entries;
185                 giNumCPUs = 0;
186                 
187                 for( i = 0; i < mptable->EntryCount; i ++ )
188                 {
189                          int    entSize = 0;
190                         switch( ents->Type )
191                         {
192                         case 0: // Processor
193                                 entSize = 20;
194                                 Log("%i: Processor", i);
195                                 Log("\t.APICID = %i", ents->Proc.APICID);
196                                 Log("\t.APICVer = 0x%02x", ents->Proc.APICVer);
197                                 Log("\t.CPUFlags = 0x%02x", ents->Proc.CPUFlags);
198                                 Log("\t.CPUSignature = 0x%08x", ents->Proc.CPUSignature);
199                                 Log("\t.FeatureFlags = 0x%08x", ents->Proc.FeatureFlags);
200                                 
201                                 
202                                 if( !(ents->Proc.CPUFlags & 1) ) {
203                                         Log("DISABLED");
204                                         break;
205                                 }
206                                 
207                                 // Check if there is too many processors
208                                 if(giNumCPUs >= MAX_CPUS) {
209                                         giNumCPUs ++;   // If `giNumCPUs` > MAX_CPUS later, it will be clipped
210                                         break;
211                                 }
212                                 
213                                 // Initialise CPU Info
214                                 gaAPIC_to_CPU[ents->Proc.APICID] = giNumCPUs;
215                                 gaCPUs[giNumCPUs].APICID = ents->Proc.APICID;
216                                 gaCPUs[giNumCPUs].State = 0;
217                                 giNumCPUs ++;
218                                 
219                                 // Send IPI
220                                 if( !(ents->Proc.CPUFlags & 2) )
221                                 {
222                                         MP_StartAP( giNumCPUs-1 );
223                                 }
224                                 
225                                 break;
226                         case 1: // Bus
227                                 entSize = 8;
228                                 Log("%i: Bus", i);
229                                 Log("\t.ID = %i", ents->Bus.ID);
230                                 Log("\t.TypeString = '%6c'", ents->Bus.TypeString);
231                                 break;
232                         case 2: // I/O APIC
233                                 entSize = 8;
234                                 Log("%i: I/O APIC", i);
235                                 Log("\t.ID = %i", ents->IOAPIC.ID);
236                                 Log("\t.Version = 0x%02x", ents->IOAPIC.Version);
237                                 Log("\t.Flags = 0x%02x", ents->IOAPIC.Flags);
238                                 Log("\t.Addr = 0x%08x", ents->IOAPIC.Addr);
239                                 break;
240                         case 3: // I/O Interrupt Assignment
241                                 entSize = 8;
242                                 Log("%i: I/O Interrupt Assignment", i);
243                                 Log("\t.IntType = %i", ents->IOInt.IntType);
244                                 Log("\t.Flags = 0x%04x", ents->IOInt.Flags);
245                                 Log("\t.SourceBusID = 0x%02x", ents->IOInt.SourceBusID);
246                                 Log("\t.SourceBusIRQ = 0x%02x", ents->IOInt.SourceBusIRQ);
247                                 Log("\t.DestAPICID = 0x%02x", ents->IOInt.DestAPICID);
248                                 Log("\t.DestAPICIRQ = 0x%02x", ents->IOInt.DestAPICIRQ);
249                                 break;
250                         case 4: // Local Interrupt Assignment
251                                 entSize = 8;
252                                 Log("%i: Local Interrupt Assignment", i);
253                                 Log("\t.IntType = %i", ents->LocalInt.IntType);
254                                 Log("\t.Flags = 0x%04x", ents->LocalInt.Flags);
255                                 Log("\t.SourceBusID = 0x%02x", ents->LocalInt.SourceBusID);
256                                 Log("\t.SourceBusIRQ = 0x%02x", ents->LocalInt.SourceBusIRQ);
257                                 Log("\t.DestLocalAPICID = 0x%02x", ents->LocalInt.DestLocalAPICID);
258                                 Log("\t.DestLocalAPICIRQ = 0x%02x", ents->LocalInt.DestLocalAPICIRQ);
259                                 break;
260                         default:
261                                 Log("%i: Unknown (%i)", i, ents->Type);
262                                 break;
263                         }
264                         ents = (void*)( (Uint)ents + entSize );
265                 }
266                 
267                 if( giNumCPUs > MAX_CPUS ) {
268                         Warning("Too many CPUs detected (%i), only using %i of them", giNumCPUs, MAX_CPUS);
269                         giNumCPUs = MAX_CPUS;
270                 }
271         
272                 while( giNumInitingCPUs )
273                         MM_FinishVirtualInit();
274                 
275                 Panic("Uh oh... MP Table Parsing is unimplemented\n");
276         }
277         else {
278                 Log("No MP Table was found, assuming uniprocessor\n");
279                 giNumCPUs = 1;
280                 gTSSs = &gTSS0;
281         }
282         #else
283         giNumCPUs = 1;
284         gTSSs = &gTSS0;
285         MM_FinishVirtualInit();
286         #endif
287         
288         #if USE_MP
289         // Initialise Normal TSS(s)
290         for(pos=0;pos<giNumCPUs;pos++)
291         {
292         #else
293         pos = 0;
294         #endif
295                 gTSSs[pos].RSP0 = 0;    // Set properly by scheduler
296                 gGDT[7+pos*2].LimitLow = sizeof(tTSS) & 0xFFFF;
297                 gGDT[7+pos*2].BaseLow = ((Uint)(&gTSSs[pos])) & 0xFFFF;
298                 gGDT[7+pos*2].BaseMid = ((Uint)(&gTSSs[pos])) >> 16;
299                 gGDT[7+pos*2].BaseHi = ((Uint)(&gTSSs[pos])) >> 24;
300                 gGDT[7+pos*2+1].DWord[0] = ((Uint)(&gTSSs[pos])) >> 32;
301         #if USE_MP
302         }
303         for(pos=0;pos<giNumCPUs;pos++) {
304                 __asm__ __volatile__ ("ltr %%ax"::"a"(0x38+pos*16));
305         }
306         #else
307         __asm__ __volatile__ ("ltr %%ax"::"a"(0x38));
308         #endif
309         
310         // Set Debug registers
311         __asm__ __volatile__ ("mov %0, %%db0" : : "r"(&gThreadZero));
312         __asm__ __volatile__ ("mov %%rax, %%db1" : : "a"(0));
313         
314         gaCPUs[0].Current = &gThreadZero;
315         
316         gProcessZero.MemState.CR3 = (Uint)gInitialPML4 - KERNEL_BASE;
317         gThreadZero.CurCPU = 0;
318         gThreadZero.KernelStack = 0xFFFFA00000000000 + KERNEL_STACK_SIZE;
319         
320         // Set timer frequency
321         outb(0x43, 0x34);       // Set Channel 0, Low/High, Rate Generator
322         outb(0x40, PIT_TIMER_DIVISOR&0xFF);     // Low Byte of Divisor
323         outb(0x40, (PIT_TIMER_DIVISOR>>8)&0xFF);        // High Byte
324         
325         // Create Per-Process Data Block
326         if( !MM_Allocate(MM_PPD_CFG) )
327         {
328                 Warning("Oh, hell, Unable to allocate PPD for Thread#0");
329         }
330
331         Proc_InitialiseSSE();
332
333         Log_Log("Proc", "Multithreading initialised");
334 }
335
336 #if USE_MP
337 void MP_StartAP(int CPU)
338 {
339         Log("Starting AP %i (APIC %i)", CPU, gaCPUs[CPU].APICID);
340         // Set location of AP startup code and mark for a warm restart
341         *(Uint16*)(KERNEL_BASE|0x467) = (Uint)&APStartup - (KERNEL_BASE|0xFFFF0);
342         *(Uint16*)(KERNEL_BASE|0x469) = 0xFFFF;
343         outb(0x70, 0x0F);       outb(0x71, 0x0A);       // Warm Reset
344         MP_SendIPI(gaCPUs[CPU].APICID, 0, 5);
345         giNumInitingCPUs ++;
346 }
347
348 void MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode)
349 {
350         Uint32  addr = (Uint)gpMP_LocalAPIC + 0x300;
351         Uint32  val;
352         
353         // High
354         val = (Uint)APICID << 24;
355         Log("*%p = 0x%08x", addr+0x10, val);
356         *(Uint32*)(addr+0x10) = val;
357         // Low (and send)
358         val = ((DeliveryMode & 7) << 8) | (Vector & 0xFF);
359         Log("*%p = 0x%08x", addr, val);
360         *(Uint32*)addr = val;
361 }
362 #endif
363
364 /**
365  * \brief Idle task
366  */
367 void Proc_IdleTask(void *ptr)
368 {
369         tCPU    *cpu = ptr;
370         cpu->IdleThread = Proc_GetCurThread();
371         cpu->IdleThread->ThreadName = (char*)"Idle Thread";
372         Threads_SetPriority( cpu->IdleThread, -1 );     // Never called randomly
373         cpu->IdleThread->Quantum = 1;   // 1 slice quantum
374         for(;;) {
375                 HALT(); // Just yeilds
376                 Threads_Yield();
377         }
378 }
379
380 /**
381  * \fn void Proc_Start(void)
382  * \brief Start process scheduler
383  */
384 void Proc_Start(void)
385 {
386         #if USE_MP
387          int    i;
388         #endif
389         
390         #if USE_MP
391         // Start APs
392         for( i = 0; i < giNumCPUs; i ++ )
393         {
394                  int    tid;
395                 if(i)   gaCPUs[i].Current = NULL;
396                 
397                 Proc_NewKThread(Proc_IdleTask, &gaCPUs[i]);             
398
399                 // Create Idle Task
400                 gaCPUs[i].IdleThread = Threads_GetThread(tid);
401                 
402                 
403                 // Start the AP
404                 if( i != giProc_BootProcessorID ) {
405                         MP_StartAP( i );
406                 }
407         }
408         
409         // BSP still should run the current task
410         gaCPUs[0].Current = &gThreadZero;
411         __asm__ __volatile__ ("mov %0, %%db0" : : "r"(&gThreadZero));
412         
413         // Start interrupts and wait for APs to come up
414         Log("Waiting for APs to come up\n");
415         __asm__ __volatile__ ("sti");
416         while( giNumInitingCPUs )       __asm__ __volatile__ ("hlt");
417         #else
418         Proc_NewKThread(Proc_IdleTask, &gaCPUs[0]);
419         
420         // Start Interrupts (and hence scheduler)
421         __asm__ __volatile__("sti");
422         #endif
423         MM_FinishVirtualInit();
424         Log_Log("Proc", "Multithreading started");
425 }
426
427 /**
428  * \fn tThread *Proc_GetCurThread(void)
429  * \brief Gets the current thread
430  */
431 tThread *Proc_GetCurThread(void)
432 {
433         #if USE_MP
434         tThread *ret;
435         __asm__ __volatile__ ("mov %%db0, %0" : "=r"(thread));
436         return ret;     // gaCPUs[ GetCPUNum() ].Current;
437         #else
438         return gaCPUs[ 0 ].Current;
439         #endif
440 }
441
442 void Proc_ClearProcess(tProcess *Process)
443 {
444         Log_Warning("Proc", "TODO: Nuke address space etc");
445 }
446
447 /*
448  * 
449  */
450 void Proc_ClearThread(tThread *Thread)
451 {
452 }
453
454 /**
455  * \brief Create a new kernel thread
456  */
457 tTID Proc_NewKThread(void (*Fcn)(void*), void *Data)
458 {
459         Uint    rsp;
460         tThread *newThread, *cur;
461         
462         cur = Proc_GetCurThread();
463         newThread = Threads_CloneTCB(0);
464         if(!newThread)  return -1;
465         
466         // Create new KStack
467         newThread->KernelStack = MM_NewKStack();
468         // Check for errors
469         if(newThread->KernelStack == 0) {
470                 free(newThread);
471                 return -1;
472         }
473
474         rsp = newThread->KernelStack;
475         *(Uint*)(rsp-=8) = (Uint)Data;  // Data (shadowed)
476         *(Uint*)(rsp-=8) = (Uint)Fcn;   // Function to call
477         *(Uint*)(rsp-=8) = (Uint)newThread;     // Thread ID
478         
479         newThread->SavedState.RSP = rsp;
480         newThread->SavedState.RIP = (Uint)&NewTaskHeader;
481         newThread->SavedState.SSE = NULL;
482 //      Log("New (KThread) %p, rsp = %p\n", newThread->SavedState.RIP, newThread->SavedState.RSP);
483         
484 //      MAGIC_BREAK();  
485         Threads_AddActive(newThread);
486
487         return newThread->TID;
488 }
489
490 /**
491  * \fn int Proc_Clone(Uint Flags)
492  * \brief Clone the current process
493  */
494 tTID Proc_Clone(Uint Flags)
495 {
496         tThread *newThread, *cur = Proc_GetCurThread();
497         Uint    rip;
498
499         // Sanity check 
500         if( !(Flags & CLONE_VM) ) {
501                 Log_Error("Proc", "Proc_Clone: Don't leave CLONE_VM unset, use Proc_NewKThread instead");
502                 return -1;
503         }
504
505         // Create new TCB
506         newThread = Threads_CloneTCB(Flags);
507         if(!newThread)  return -1;
508         
509         // Save core machine state
510         rip = Proc_CloneInt(&newThread->SavedState.RSP, &newThread->Process->MemState.CR3);
511         if(rip == 0)    return 0;       // Child
512         newThread->KernelStack = cur->KernelStack;
513         newThread->SavedState.RIP = rip;
514         newThread->SavedState.SSE = NULL;
515
516         // DEBUG
517         #if 0
518         Log("New (Clone) %p, rsp = %p, cr3 = %p", rip, newThread->SavedState.RSP, newThread->MemState.CR3);
519         {
520                 Uint cr3;
521                 __asm__ __volatile__ ("mov %%cr3, %0" : "=r" (cr3));
522                 Log("Current CR3 = 0x%x, PADDR(RSP) = 0x%x", cr3, MM_GetPhysAddr(newThread->SavedState.RSP));
523         }
524         #endif
525         // /DEBUG
526         
527         // Lock list and add to active
528         Threads_AddActive(newThread);
529         
530         return newThread->TID;
531 }
532
533 /**
534  * \fn int Proc_SpawnWorker(void)
535  * \brief Spawns a new worker thread
536  */
537 int Proc_SpawnWorker(void (*Fcn)(void*), void *Data)
538 {
539         tThread *new, *cur;
540         Uint    stack_contents[3];
541
542         cur = Proc_GetCurThread();
543         
544         // Create new thread
545         new = Threads_CloneThreadZero();
546         if(!new) {
547                 Warning("Proc_SpawnWorker - Out of heap space!\n");
548                 return -1;
549         }
550
551         // Create the stack contents
552         stack_contents[2] = (Uint)Data;
553         stack_contents[1] = (Uint)Fcn;
554         stack_contents[0] = (Uint)new;
555         
556         // Create a new worker stack (in PID0's address space)
557         // - The stack is built by this code using stack_contents
558         new->KernelStack = MM_NewWorkerStack(stack_contents, sizeof(stack_contents));
559
560         new->SavedState.RSP = new->KernelStack - sizeof(stack_contents);
561         new->SavedState.RIP = (Uint)&NewTaskHeader;
562         new->SavedState.SSE = NULL;
563         
564 //      Log("New (Worker) %p, rsp = %p\n", new->SavedState.RIP, new->SavedState.RSP);
565         
566         // Mark as active
567         new->Status = THREAD_STAT_PREINIT;
568         Threads_AddActive( new );
569         
570         return new->TID;
571 }
572
573 /**
574  * \brief Creates a new user stack
575  */
576 Uint Proc_MakeUserStack(void)
577 {
578          int    i;
579         Uint    base = USER_STACK_TOP - USER_STACK_SZ;
580         
581         // Check Prospective Space
582         for( i = USER_STACK_SZ >> 12; i--; )
583         {
584                 if( MM_GetPhysAddr( (void*)(base + (i<<12)) ) != 0 )
585                         break;
586         }
587         
588         if(i != -1)     return 0;
589         
590         // Allocate Stack - Allocate incrementally to clean up MM_Dump output
591         // - Most of the user stack is the zero page
592         for( i = 0; i < (USER_STACK_SZ-USER_STACK_PREALLOC)/0x1000; i++ )
593         {
594                 MM_AllocateZero( base + (i<<12) );
595         }
596         // - but the top USER_STACK_PREALLOC pages are actually allocated
597         for( ; i < USER_STACK_SZ/0x1000; i++ )
598         {
599                 tPAddr  alloc = MM_Allocate( base + (i<<12) );
600                 if( !alloc )
601                 {
602                         // Error
603                         Log_Error("Proc", "Unable to allocate user stack (%i pages requested)", USER_STACK_SZ/0x1000);
604                         while( i -- )
605                                 MM_Deallocate( base + (i<<12) );
606                         return 0;
607                 }
608         }
609         
610         return base + USER_STACK_SZ;
611 }
612
613 void Proc_StartUser(Uint Entrypoint, Uint Base, int ArgC, const char **ArgV, int DataSize)
614 {
615         Uint    *stack;
616          int    i;
617         const char      **envp = NULL;
618         Uint16  ss, cs;
619         
620         
621         // Copy Arguments
622         stack = (void*)Proc_MakeUserStack();
623         if(!stack) {
624                 Log_Error("Proc", "Unable to create user stack!");
625                 Threads_Exit(0, -1);
626         }
627         stack -= (DataSize+7)/8;
628         memcpy( stack, ArgV, DataSize );
629         free(ArgV);
630         
631         // Adjust Arguments and environment
632         if(DataSize)
633         {
634                 Uint    delta = (Uint)stack - (Uint)ArgV;
635                 ArgV = (const char**)stack;
636                 for( i = 0; ArgV[i]; i++ )      ArgV[i] += delta;
637                 envp = &ArgV[i+1];
638                 for( i = 0; envp[i]; i++ )      envp[i] += delta;
639         }
640         
641         // User Mode Segments
642         // 0x2B = 64-bit
643         ss = 0x23;      cs = 0x2B;
644         
645         // Arguments
646         *--stack = (Uint)envp;
647         *--stack = (Uint)ArgV;
648         *--stack = (Uint)ArgC;
649         *--stack = Base;
650         
651         Proc_StartProcess(ss, (Uint)stack, 0x202, cs, Entrypoint);
652 }
653
654 void Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP)
655 {
656         if( !(CS == 0x1B || CS == 0x2B) || SS != 0x23 ) {
657                 Log_Error("Proc", "Proc_StartProcess: CS / SS are not valid (%x, %x)",
658                         CS, SS);
659                 Threads_Exit(0, -1);
660         }
661 //      Log("Proc_StartProcess: (SS=%x, Stack=%p, Flags=%x, CS=%x, IP=%p)", SS, Stack, Flags, CS, IP);
662 //      MM_DumpTables(0, USER_MAX);
663         if(CS == 0x1B)
664         {
665                 // 32-bit return
666                 __asm__ __volatile__ (
667                         "mov %0, %%rsp;\n\t"    // Set stack pointer
668                         "mov %2, %%r11;\n\t"    // Set RFLAGS
669                         "sysret;\n\t"
670                         : : "r" (Stack), "c" (IP), "r" (Flags)
671                         );
672         }
673         else
674         {
675                 // 64-bit return
676                 __asm__ __volatile__ (
677                         "mov %0, %%rsp;\n\t"    // Set stack pointer
678                         "mov %2, %%r11;\n\t"    // Set RFLAGS
679                         "sysretq;\n\t"
680                         : : "r" (Stack), "c" (IP), "r" (Flags)
681                         );
682         }
683         for(;;);
684 }
685
686 /**
687  * \fn int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
688  * \brief Demotes a process to a lower permission level
689  * \param Err   Pointer to user's errno
690  * \param Dest  New Permission Level
691  * \param Regs  Pointer to user's register structure
692  */
693 int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
694 {
695          int    cpl = Regs->CS & 3;
696         // Sanity Check
697         if(Dest > 3 || Dest < 0) {
698                 *Err = -EINVAL;
699                 return -1;
700         }
701         
702         // Permission Check
703         if(cpl > Dest) {
704                 *Err = -EACCES;
705                 return -1;
706         }
707         
708         // Change the Segment Registers
709         Regs->CS = (((Dest+1)<<4) | Dest) - 8;
710         Regs->SS = ((Dest+1)<<4) | Dest;
711         
712         return 0;
713 }
714
715 /**
716  * \brief Calls a signal handler in user mode
717  * \note Used for signals
718  */
719 void Proc_CallFaultHandler(tThread *Thread)
720 {
721         // Never returns
722         Proc_ReturnToUser(Thread->FaultHandler, Thread->KernelStack, Thread->CurFaultNum);
723         for(;;);
724 }
725
726 void Proc_DumpThreadCPUState(tThread *Thread)
727 {
728         Log("  At %04x:%016llx", Thread->SavedState.UserCS, Thread->SavedState.UserRIP);
729 }
730
731 void Proc_Reschedule(void)
732 {
733         tThread *nextthread, *curthread;
734          int    cpu = GetCPUNum();
735
736         // TODO: Wait for it?
737         if(IS_LOCKED(&glThreadListLock))        return;
738         
739         curthread = gaCPUs[cpu].Current;
740
741         nextthread = Threads_GetNextToRun(cpu, curthread);
742
743         if(nextthread == curthread)     return ;
744         if(!nextthread)
745                 nextthread = gaCPUs[cpu].IdleThread;
746         if(!nextthread)
747                 return ;
748
749         #if DEBUG_TRACE_SWITCH
750         LogF("\nSwitching to task CR3 = 0x%x, RIP = %p, RSP = %p - %i (%s)\n",
751                 nextthread->Process->MemState.CR3,
752                 nextthread->SavedState.RIP,
753                 nextthread->SavedState.RSP,
754                 nextthread->TID,
755                 nextthread->ThreadName
756                 );
757         #endif
758
759         // Update CPU state
760         gaCPUs[cpu].Current = nextthread;
761         gTSSs[cpu].RSP0 = nextthread->KernelStack-4;
762         __asm__ __volatile__ ("mov %0, %%db0" : : "r" (nextthread));
763
764         if( curthread )
765         {
766                 // Save FPU/MMX/XMM/SSE state
767                 if( curthread->SavedState.SSE )
768                 {
769                         Proc_SaveSSE( ((Uint)curthread->SavedState.SSE + 0xF) & ~0xF );
770                         curthread->SavedState.bSSEModified = 0;
771                         Proc_DisableSSE();
772                 }
773                 SwitchTasks(
774                         nextthread->SavedState.RSP, &curthread->SavedState.RSP,
775                         nextthread->SavedState.RIP, &curthread->SavedState.RIP,
776                         nextthread->Process->MemState.CR3
777                         );
778         }
779         else
780         {
781                 Uint    tmp;
782                 SwitchTasks(
783                         nextthread->SavedState.RSP, &tmp,
784                         nextthread->SavedState.RIP, &tmp,
785                         nextthread->Process->MemState.CR3
786                         );
787         }
788         return ;
789 }
790
791 /**
792  * \fn void Proc_Scheduler(int CPU)
793  * \brief Swap current thread and clears dead threads
794  */
795 void Proc_Scheduler(int CPU, Uint RSP, Uint RIP)
796 {
797 #if 0
798         tThread *thread;
799
800         // If the spinlock is set, let it complete
801         if(IS_LOCKED(&glThreadListLock))        return;
802         
803         // Get current thread
804         thread = gaCPUs[CPU].Current;
805
806         if( thread )
807         {
808                 tRegs   *regs;
809                 // Reduce remaining quantum and continue timeslice if non-zero
810                 if(thread->Remaining--) return;
811                 // Reset quantum for next call
812                 thread->Remaining = thread->Quantum;
813                 
814                 // TODO: Make this more stable somehow
815                 {
816                         regs = (tRegs*)(RSP+(1)*8);     // CurThread
817                         thread->SavedState.UserCS = regs->CS;
818                         thread->SavedState.UserRIP = regs->RIP;
819                 }
820         }
821
822         // ACK Timer here?
823
824         Proc_Reschedule();
825 #endif
826 }
827
828 // === EXPORTS ===
829 EXPORT(Proc_SpawnWorker);

UCC git Repository :: git.ucc.asn.au