1 \chapter{Literature Review}\label{Background}
3 The first half of this chapter will be devoted to documents themselves, including: the representation and displaying of graphics primitives\cite{computergraphics2}, and how collections of these primitives are represented in document formats, focusing on widely used standards\cite{plrm, pdfref17, svg2011-1.1}.
5 We will find that although there has been a great deal of research into the rendering, storing, editing, manipulation, and extension of document formats, modern standards are content to specify --- at best --- single precision IEEE-754 floating point arithmetic.
7 The research on arbitrary precision arithmetic applied to documents is rather sparse; however arbitrary precision arithmetic itself is a very active field of research. Therefore, the second half of this chapter will be devoted to considering fixed precision floating point numbers as specified by the IEEE-754 standard, possible limitations in precision, and alternative number representations for increased or arbitrary precision arithmetic.
9 In Chapter \ref{Progress}, we will discuss our findings so far with regards to arbitrary precision arithmetic applied to document formats, and expand upon the goals outlined in Chapture \ref{Proposal}.
11 \section{Raster and Vector Images}\label{Raster and Vector Images}
12 \input{chapters/Background_Raster-vs-Vector}
14 \section{Rendering Vector Images}\label{Rasterising Vector Images}
16 Hearn and Baker's textbook Computer Graphics''\cite{computergraphics2} gives a comprehensive overview of graphics from physical display technologies through fundamental drawing algorithms to popular graphics APIs. This section will examine algorithms for drawing two dimensional geometric primitives on raster displays as discussed in Computer Graphics'' and the relevant literature. This section is by no means a comprehensive survey of the literature but intends to provide some idea of the computations which are required to render a document.
18 It is of some historical significance that vector display devices were popular during the 70s and 80s, and papers oriented towards drawing on these devices can be found\cite{brassel1979analgorithm}. Whilst curves can be drawn at high resolution on vector displays, a major disadvantage was shading; by the early 90s the vast majority of computer displays were raster based\cite{computergraphics2}.
20 \subsection{Straight Lines}\label{Rasterising Straight Lines}
21 \input{chapters/Background_Lines}
23 \subsection{Spline Curves and B{\'e}ziers}\label{Spline Curves}
24 \input{chapters/Background_Spline}
26 \subsection{Font Glyphs}\label{Font Rendering}
27 \input{chapters/Background_Fonts}
32 %\cite{brassel1979analgorithm}; %\cite{lane1983analgorithm}.
34 \subsection{Compositing}\label{Compositing and the Painter's Model}
36 %So far we have discussed techniques for rendering vector graphics primitives in isolation, with no regard to the overall structure of a document which may contain many thousands of primitives. A straight forward approach would be to render all elements sequentially to the display, with the most recently drawn pixels overwriting lower elements. Such an approach is particularly inconvenient for anti-aliased images where colours must appear to smoothly blur between the edge of a primitive and any drawn underneath it.
38 Colour raster displays are based on an additive red-green-blue $(r,g,b)$ colour representation which matches the human eye's response to light\cite{computergraphics2}. In 1984, Porter and Duff introduced a fourth colour channel for rasterised images called the alpha'' channel, analogous to the transparency of a pixel\cite{porter1984compositing}. In compositing models, elements can be rendered seperately, with the four colour channels of successively drawn elements being combined according to one of several possible operations.
40 In the painter's model'' as described by the SVG standard the over'' operation is used when rendering one primitive over another\cite{svg2011-1.1}.
41 Given an existing pixel $P_1$ with colour values $(r_1, g_1, b_1, a_1)$ and a pixel $P_2$ with colours $(r_2, g_2, b_2, a_2)$ to be painted over $P_1$, the resultant pixel $P_T$ has colours given by:
42 \begin{align}
43         a_T &= 1 - (1-a_1)(1-a_2) \\
44         r_T &= (1 - a_2)r_1 + r_2 \quad \text{(similar for $g_T$ and $b_T$)}
45 \end{align}
46 It should be apparent that alpha values of $1$ correspond to an opaque pixel; that is, when $a_2 = 1$ the resultant pixel $P_T$ is the same as $P_2$.
47 When the final pixel is actually drawn on an rgb display, the $(r, g, b)$ components are $(r_T/a_T, g_T/a_T, b_T/a_T)$.
49 The PostScript and PDF standards, as well as the OpenGL API also use a painter's model for compositing. However, PostScript does not include an alpha channel, so $P_T = P_2$ always\cite{plrm}. Figure \ref{SVG} illustrates the painter's model for partially transparent shapes as they would appear in both the SVG and PDF models.
51 \subsection{Rasterisation on the CPU and GPU}
53 Traditionally, vector images have been rasterized by the CPU before being sent to a specialised Graphics Processing Unit (GPU) for drawing\cite{computergraphics2}. Rasterisation of simple primitives such as lines and triangles have been supported directly by GPUs for some time through the OpenGL standard\cite{openglspec}. However complex shapes (including those based on B{\'e}zier curves such as font glyphs) must either be rasterised entirely by the CPU or decomposed into simpler primitives that the GPU itself can directly rasterise. There is a significant body of research devoted to improving the performance of rendering such primitives using the latter approach, mostly based around the OpenGL API\cite{robart2009openvg, leymarie1992fast, frisken2000adaptively, green2007improved, loop2005resolution, loop2007rendering}. Recently Mark Kilgard of the NVIDIA Corporation described an extension to OpenGL for NVIDIA GPUs capable of drawing and shading vector paths\cite{kilgard2012gpu,kilgard300programming}. From this development it seems that rasterization of vector graphics may eventually become possible upon the GPU.openglspec
55 It is not entirely clear how well supported the IEEE-754 standard for floating point computation (which we will discuss in Section \ref{}) is amongst GPUs. Although the OpenGL API does use IEEE-754 number representations, research by Hillesland and Lastra in 2004 suggested that many GPUs were not internally compliant with the standard\cite{hillesland2004paranoia}. Arbitrary precision arithmetic, whilst provided by many libraries for CPU based calculations, is virtually unheard of in the context of GPU rendering.
57  \pagebreak
58 \section{Document Representations}\label{Document Representations}
60 The representation of information, particularly for scientific purposes, has changed dramatically over the last few decades. For example, Brassel's 1979 paper referenced earlier\cite{brassel1979analgorithm} has been produced on a mechanical type writer. Although the paper discusses an algorithm for shading on computer displays, the figures illustrating this algorithm have not been generated by a computer, but drawn by Brassel's assistant. In contrast, modern papers such as Barnes et. al's 2013 paper on embedding 3d images in PDF documents\cite{barnes2013embedding} can themselves be an interactive proof of concept.
62 Haye's 2012 article Pixels or Perish'' discusses the recent history and current state of the art in documents for scientific publications\cite{hayes2012pixels}. Hayes argued that there are currently two different approaches to representing a document: As a sequence of static sheets of paper (Programmed Documents) or as a dynamic and interactive way to convey information, using the Document Object Model. We will now explore these two approaches and the extent to which they overlap.
65 \subsection{Programmed Documents}
66 \input{chapters/Background_Interpreted}
68 \pagebreak
69 \subsection{Document Object Model}\label{Document Object Model}
70 \input{chapters/Background_DOM}
72 \subsection{The Portable Document Format}
74 Adobe's Portable Document Format (PDF) is currently used almost universally for sharing documents; the ability to export or print to PDF can be found in most graphical document editors and even some plain text editors\cite{cheng2002finally}.
76 Hayes describes PDF as ... essentially 'flattened' PostScript; it’s what’s left when you remove all the procedures and loops in a program, replacing them with sequences of simple drawing commands.''\cite{hayes2012pixels}. Consultation of the PDF 1.7 standard shows that this statement does not a give a complete picture --- despite being based on the Adobe PostScript model of a document as a series of pages'' to be printed by executing sequential instructions, from version 1.5 the PDF standard began to borrow some ideas from the Document Object Model. For example, interactive elements such as forms may be included as XHTML objects and styled using CSS. Actions'' are objects used to modify the data structure dynamically. In particular, it is possible to include Javascript Actions. Adobe defines the API for Javascript actions seperately to the PDF standard\cite{js_3d_pdf}. There is some evidence in the literature of attempts to exploit these features, with mixed success\cite{barnes2013embedding, hayes2012pixels}.
78 %\subsection{Scientific Computation Packages}
81 \section{Precision required by Document Formats}
83 We briefly summarise the requirements of the standards discussed so far in regards to the precision of mathematical operations.
85 \subsection{PostScript}
86 The PostScript reference describes a Real'' object for representing coordinates and values as follows: Real objects approximate mathematical real numbers within a much larger interval, but with limited precision; they are implemented as floating-point numbers''\cite{plrm}. There is no reference to the precision of mathematical operations, but the implementation limits \emph{suggest} a range of $\pm10^{38}$ approximate'' and the smallest values not rounded to zero are $\pm10^{-38}$ approximate''.
88 \subsection{PDF}
89 PDF defines Real'' objects in a similar way to PostScript, but suggests a range of $\pm3.403\times10^{38}$ and smallest non-zero values of $\pm1.175\times10^{38}$\cite{pdfref17}. A note in the PDF 1.7 manual mentions that Acrobat 6 now uses IEEE-754 single precision floats, but previous versions used 32-bit fixed point numbers'' and ... Acrobat 6 still converts floating-point numbers to fixed point for some components''.
91 \subsection{\TeX and METAFONT}
93 In The METAFONT book'' Knuth appears to describe coordinates as fixed point numbers: The computer works internally with coordinates that are integer multiples of $\frac{1}{65536} \approx 0.00002$ of the width of a pixel''\cite{knuth1983metafont}. There is no mention of precision in The \TeX book''. In 2007 Beebe claimed this was due to the lack of standardised floating point arithmetic on computers at the time; a problem that the IEEE-754 was designed to solve\cite{beebe2007extending}. Beebe also suggests that \TeX and METAFONT could now be modified to use IEEE-754 arithmetic.
95 \subsection{SVG}
97 The SVG standard specifies a minimum precision equivelant to that of single precision floats'' (presumably referring to IEEE-754) with a range of \verb/-3.4e+38F/ to \verb/+3.4e+38F/, and states It is recommended that higher precision floating point storage and computation be performed on operations such as
98 coordinate system transformations to provide the best possible precision and to prevent round-off errors.''\cite{svg2011-1.1} An SVG Viewer may refer to itself as High Quality'' if it uses a minimum of double precision'' floats.
100 \subsection{Javascript}
101 Although Javascript is not a stand alone document format, we include it here due to its relation with the SVG, HTML5 and PDF standards.
104 According to the EMCA-262 standard, The Number type has exactly 18437736874454810627 (that is, $2^64-^53+3$) values,
105 representing the double-precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic''\cite{ecma-262}.
106 The Number type does differ slightly from IEEE-754 in that there is only a single valid representation of Not a Number'' (NaN). The EMCA-262 does not define an integer'' representation.
109 \section{Real Number Representations}
111 We have found that PostScript, PDF, and SVG document standards all restrict themselves to IEEE floating point number representations of coordinates. This is unsurprising as the IEEE standard has been successfully adopted almost universally by hardware manufactures and programming language standards since the early 1990s. In the traditional view of a document as a static, finite sheet of paper, there is little motivation for enhanced precision.
113 In this section we will begin by investigating floating point numbers as defined in the IEEE standard and their limitations. We will then consider alternative number representations including fixed point numbers, arbitrary precision floats, rational numbers, p-adic numbers and symbolic representations. \rephrase{Oh god I am still writing about IEEE floats let alone all those other things}
115 \rephrase{Reorder to start with Integers, General Floats, then go to IEEE, then other things}
117 \subsection{IEEE Floating Points}
119 Although the concept of a floating point representation has been attributed to various early computer scientists including Charles Babbage\cite{citationneeded}, it is widely accepted that William Kahan and his colleagues working on the IEEE-754 standard in the 1980s are the fathers of modern floating point computation''\cite{citationneeded}. The original IEEE-754 standard specified the encoding, number of bits, rounding methods, and maximum acceptable errors for the basic floating point operations for base $B = 2$ floats. It also specifies exceptions'' --- mechanisms by which a program can detect an error such as division by zero\footnote{Kahan has argued that exceptions in IEEE-754 are conceptually different to Exceptions as defined in several programming languages including C++ and Java. An IEEE exception is intended to prevent an error by its detection, whilst an exception in those languages is used to indicate an error has already occurred\cite{}}. We will restrict ourselves to considering $B = 2$, since it was found that this base in general gives the smallest rounding errors\cite{HFP}, although it is worth noting that different choices of base had been used historically\cite{goldman1991whatevery}, and the IEEE-854 and later the revised IEEE-754 standard specify a decimal representation $B = 10$ intended for use in financial applications.
121 \subsection{Floating Point Definition}
123 A floating point number $x$ is commonly represented by a tuple of integers $(s, e, m)$ in base $B$ as\cite{HFP, ieee2008-754}:
125 \begin{align*}
126         x &= (-1)^{s} \times m \times B^{e}
127 \end{align*}
129 Where $s$ is the sign and may be zero or one, $m$ is commonly called the mantissa'' and $e$ is the exponent.
130 The name floating point'' refers to the equivelance of the $\times B^e$ operation to a shifting of a decimal point along the mantissa. This contrasts with a fixed point'' representation where $x$ is the sum of two fixed size numbers representing the integer and fractional part.
132 In the IEEE-754 standard, for a base of $B = 2$, numbers are encoded in continuous memory by a fixed number of bits, with $s$ occupying 1 bit, followed by $e$ and $m$ occupying a number of bits specified by the precision; 5 and 10 for a binary16 or half precision'' float, 8 and 23 for a binary32 or single precision'' and 15 and 52 for a binary64 or double precision'' float\cite{HFP, ieee2008-754}.
135 \subsection{Precision and Rounding}
137 Real values which cannot be represented exactly in a floating point representation must be rounded. The results of a floating point operation will in general be such values and thus there is a rounding error possible in any floating point operation. Goldberg's assertively titled 1991 paper What Every Computer Scientist Needs to Know about Floating Point Arithmetic'' provides a comprehensive overview of issues in floating point arithmetic and relates these to the 1984 version of the IEEE-754 standard\cite{goldberg1991whatevery}. More recently, after the release of the revised IEEE-754 standard in 2008, a textbook Handbook Of Floating Point Arithmetic'' has been published which provides a thourough review of literature relating to floating point arithmetic in both software and hardware\cite{HFP}.
140 Figure \ref{minifloat.pdf} shows the positive real numbers which can be represented exactly by an 8 bit base $B = 2$ floating point number; and illustrates that a set of fixed precision floating point numbers forms a discrete approximation of the reals. There are only $2^7 = 256$ numbers in this set, which means it is easier to see some of the properties of floats that would be unclear using one of the IEEE-754 encodings. The first set of points corresponds to using 2 and 5 bits to encode $e$ and $m$ whilst the second set of points corresponds to a 3 and 4 bit encoding. This allows us to see the trade off between the precision and range of real values represented.
142 \begin{figure}[H]
143         \centering
144         \includegraphics[width=0.8\textwidth]{figures/minifloat.pdf} \\
145         \includegraphics[width=0.8\textwidth]{figures/minifloat_diff.pdf}
146         \caption{The mapping of 8 bit floats to reals}
147 \end{figure}
149 \subsection{Floating Point Operations}
151 Floating point operations can in principle be performed using integer operations, but specialised Floating Point Units (FPUs) are an almost universal component of modern processors\cite{citationneeded}. The improvement of FPUs remains highly active in several areas including: efficiency\cite{seidel2001onthe}; accuracy of operations\cite{dieter2007lowcost}; and even the adaptation of algorithms originally used in software for reducing the overal error of a sequence of operations\cite{kadric2013accurate}. In this section we will consider the algorithms for floating point operations without focusing on the hardware implementation of these algorithms.
154 \subsection{Some sort of Example(s) or Floating Point Mayhem}
156 \rephrase{Eg: $f(x) = |x|$ calculated from sqrt and squaring}
158 \rephrase{Eg: Massive rounding errors from calculatepi}
160 \rephrase{Eg: Actual graphics things :S}
163 \subsection{Limitations Imposed By Graphics APIs and/or GPUs}
165 Traditionally algorithms for drawing vector graphics are performed on the CPU; the image is rasterised and then sent to the GPU for rendering\cite{}. Recently there has been a great deal of literature relating to implementation of algorithms such as B{\'e}zier curve rendering\cite{} or shading\cite{} on the GPU. As it seems the trend is to move towards GPU
167 \rephrase{6. Here are ways GPU might not be IEEE-754 --- This goes *somewhere* in here but not sure yet}
169 \begin{itemize}
170         \item Internal representations are GPU dependent and may not match IEEE\cite{hillesland2004paranoia}
171         \item OpenGL standards specify: binary16, binary32, binary64
172         \item OpenVG aims to become a standard API for SVG viewers but the API only uses binary32 and hardware implementations may use less than this internally\cite{rice2008openvg}
173         \item It seems that IEEE has not been entirely successful; although all modern CPUs and GPUs are able to read and write IEEE floating point types, many do not conform to the IEEE standard in how they represent floating point numbers internally.
174         \item \rephrase{Blog post alert} \url{https://dolphin-emu.org/blog/2014/03/15/pixel-processing-problems/}
175 \end{itemize}
179 \rephrase{7. Sod all that, let's just use an arbitrary precision library (AND THUS WE FINALLY GET TO THE POINT)}
181 \subsection{Arbitrary Precision Floating Point Numbers}
183 An arbitrary precision floating point number simply uses extra bits to store extra precision. Do it all using MFPR\cite{fousse2007mpfr}, she'll be right.
185 \rephrase{8. Here is a brilliant summary of sections 7- above}
187 Dear reader, thankyou for your persistance in reading this mangled excuse for a Literature Review.
188 Hopefully we have brought together the radically different areas of interest together in some sort of coherant fashion.
189 In the next chapter we will talk about how we have succeeded in rendering a rectangle. It will be fun. I am looking forward to it.
191 \rephrase{Oh dear this is not going well} UCC git Repository :: git.ucc.asn.au