I mean it this time I am going to sleep
authorSam Moore <matches@ucc.asn.au>
Thu, 22 May 2014 17:57:00 +0000 (01:57 +0800)
committerSam Moore <matches@ucc.asn.au>
Thu, 22 May 2014 17:57:00 +0000 (01:57 +0800)
chapters/Background.tex
chapters/Background_DOM.tex
thesis.pdf

index 5d63d80..aa9d4d8 100644 (file)
@@ -98,23 +98,21 @@ The SVG standard specifies a minimum precision equivelant to that of ``single pr
 coordinate system transformations to provide the best possible precision and to prevent round-off errors.''\cite{svg2011-1.1} An SVG Viewer may refer to itself as ``High Quality'' if it uses a minimum of ``double precision'' floats.
 
 \subsection{Javascript}
-We include Javascript here due to its relation with the SVG, HTML5 and PDF standards.
-
+%We include Javascript here due to its relation with the SVG, HTML5 and PDF standards.
 According to the EMCA-262 standard, ``The Number type has exactly 18437736874454810627 (that is, $2^64-^53+3$) values, 
 representing the double-precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic''\cite{ecma-262}. 
 The Number type does differ slightly from IEEE-754 in that there is only a single valid representation of ``Not a Number'' (NaN). The EMCA-262 does not define an ``integer'' representation.
        
 
-\section{Number Representations}
 
-Consider a value of $7.25 = 2^2 + 2^1 + 2^0 + 2^{-2}$. In binary, this can be written as $111.01_2$ Such a value would require 5 binary digits (bits) of memory to represent exactly. On the other hand a rational value such as $7\frac{1}{3}$ could not be represented exactly; the sequence of bits $111.0111 \text{ ...}_2$ never terminates.
+\section{Number Representations}
 
-Integer representations do not allow for a ``point'' as shown in these examples, that is, no bits are reserved for the fractional part of a number. $7.25$ would be rounded to the nearest integer value, $7$. A fixed point representation keeps the decimal place at the same position for all values. Floating point representations can be thought of as analogous to scientific notation; an ``exponent'' and fixed point value are encoded, with multiplication by the exponent moving the position of the point.
 
-Modern computer hardware typically supports integer and floating-point number representations. Due to physical limitations, the size of these representations is limited; this is the fundamental source of both limits on range and precision in computer based calculations. 
+Consider a value of $7.25 = 2^2 + 2^1 + 2^0 + 2^{-2}$. In binary, this can be written as $111.01_2$ Such a value would require 5 binary digits (bits) of memory to represent exactly. On the other hand a rational value such as $7\frac{1}{3}$ could not be represented exactly; the sequence of bits $111.0111 \text{ ...}_2$ never terminates. Modern computer hardware typically supports integer and floating-point number representations. Due to physical limitations, the size of these representations is limited; this is the fundamental source of both limits on range and precision in computer based calculations. 
 
+A Fixed Point representation keeps the ``point'' at the same position in a string of bits. Floating point representations can be thought of as analogous to scientific notation; an ``exponent'' and fixed point value are encoded, with multiplication by the exponent moving the position of the point.
 
-\subsection{Floating Point Definition}
+\subsection{Floating Point Definitions}
 
 A floating point number $x$ is commonly represented by a tuple of values $(s, e, m)$ in base $B$ as\cite{HFP, ieee2008-754}:
 
@@ -129,9 +127,9 @@ The choice of base $B = 2$ in the original IEEE-754 standard matches the nature
 
 The IEEE-754 encoding of $s$, $e$ and $m$ requires a fixed number of continuous bits dedicated to each value. Originally two encodings were defined: binary32 and binary64. $s$ is always encoded in a single leading bit, whilst (8,23) and (11,53) bits are used for the (exponent, mantissa) encodings respectively. 
 
-$m$ as encoded in the IEEE-754 standard is not exactly equivelant to a fixed point value. By assuming an implicit leading bit (ie: restricting $1 \leq m < 2$) except for when $e = 0$, floating point values are gauranteed to have unique representations. When $e = 0$ the leading bit is not implied; these values are called ``denormals''. This idea, which allows for 1 extra bit of precision for the normalised values appears to have been considered by Goldberg as early as 1967\cite{goldbern1967twentyseven}.
+The encoding of $m$ in the IEEE-754 standard is not exactly equivelant to a fixed point value. By assuming an implicit leading bit (ie: restricting $1 \leq m < 2$) except for when $e = 0$, floating point values are gauranteed to have a unique representations; these representations are said to be ``normalised''. When $e = 0$ the leading bit is not implied; these representations are called ``denormals'' because multiple representations may map to the same real value. This idea, which allows for one extra bit of precision when using normalised values appears to have been considered by Goldberg as early as 1967\cite{goldbern1967twentyseven}.
 
-Figure \ref{float.pdf} shows the positive real numbers which can be represented exactly by an 8 bit floating point number encoded in the IEEE-754 format\footnote{Not quite; we are ignoring the IEEE-754 definitions of NaN and Infinity for simplicity}, and the distance between successive floating point numbers. We show two encodings using (1,2,5) and (1,3,4) bits to encode (sign, exponent, mantissa) respectively. We have also plotted a fixed point representation. For each distinct value of the exponent, the successive floating point representations lie on a straight line with constant slope. As the exponent increases, larger values are represented, but the distance between successive values increases; this can be seen on the right. The marked single point discontinuity at \verb/0x10/ and \verb/0x20/ occur when $e$ leaves the denormalised region and the encoding of $m$ changes.
+Figure \ref{float.pdf}\footnote{In a digital PDF viewer we suggest increasing the zoom level --- the graphs were created from SVG images} shows the positive real numbers which can be represented exactly by an 8 bit floating point number encoded in the IEEE-754 format\footnote{Not quite; we are ignoring the IEEE-754 definitions of NaN and Infinity for simplicity}, and the distance between successive floating point numbers. We show two encodings using (1,2,5) and (1,3,4) bits to encode (sign, exponent, mantissa) respectively. For each distinct value of the exponent, the successive floating point representations lie on a straight line with constant slope. As the exponent increases, larger values are represented, but the distance between successive values increases; this can be seen on the right. The marked single point discontinuity at \verb/0x10/ and \verb/0x20/ occur when $e$ leaves the denormalised region and the encoding of $m$ changes. We have also plotted a fixed point representation for comparison; fixed point and integer representations appear as straight lines - the distance between points is always constant.
 
 The earlier example $7.25$ would be converted to a (1,3,4) floating point representation as follows:
 \begin{enumerate}
@@ -187,8 +185,8 @@ Floating point operations can in principle be performed using integer operations
 
 In 1971 Dekker formalised a series of algorithms including the Fast2Sum method for calculating the correction term due to accumulated rounding errors\cite{dekker1971afloating}. The exact result of $x + y$ may be expressed in terms of floating point operations with rounding as follows:
 \begin{align*}
-       z &= \text{RN}(x + y) w &= \text{RN}(z - x) \\
-       zz &= \text{RN}(y - w) \implies x + y &= zz
+       z = \text{RN}(x + y) &\quad w = \text{RN}(z - x) \\
+       zz = \text{RN}(y - w) &\quad \implies x + y = zz
 \end{align*}
 
 \subsection{Arbitrary Precision Floating Point Numbers}
index 56ba48f..5768411 100644 (file)
@@ -17,7 +17,7 @@ var node = document.getElementById("curvedshape"); // Find the node by its uniqu
 node.style.fill = "#000000"; // Change the ``style'' attribute and set the CSS fill colour 
 \end{minted}
 
-To illustrate the power of this technique we have produced an example to generate an SVG interactively using HTML. The example generates successive iterations of a particular type of fractal curve first described by Koch\cite{koch1904surune} in 1904 and a popular example in modern literature \cite{goldman_fractal}. Unfortunately as it is currently possible to directly include W3C HTML in a PDF, we are only able to provide some examples of the output as static images in Figure \ref{koch}. The W3C has produced a primer describing the use of HTML5 and Javascript to produce interactive SVG's\cite{w3c2010svghtmlprimer}, and the HTML5 and SVG standards themselves include several examples.
+To illustrate the power of this technique we have produced an example to generate an SVG interactively using HTML. The example generates successive iterations of a particular type of fractal curve first described by Koch\cite{koch1904surune} in 1904 and a popular example in modern literature \cite{goldman_thefractal}. Unfortunately as it is currently possible to directly include W3C HTML in a PDF, we are only able to provide some examples of the output as static images in Figure \ref{koch}. The W3C has produced a primer describing the use of HTML5 and Javascript to produce interactive SVG's\cite{w3c2010svghtmlprimer}, and the HTML5 and SVG standards themselves include several examples.
 
 In HTML5, Javascript is not restricted to merely manipulating the DOM to alter the appearance of a document. The \verb/<canvas>/ tag and associated API provide a means to directly set the values of pixels on a display. This sort of low level API is inteded for performance intensive graphical applications such as web based games\footnote{For an example by the author including both the canvas2d and experimental WebGL APIs see \url{http://rabbitgame.net}}. As Hayes points out, there is some similarity between the \verb/<canvas>/ API and the PostScript interpreted approach to drawing\cite{hayes2012pixelsor}.
 
index 4fa29e3..d818af0 100644 (file)
Binary files a/thesis.pdf and b/thesis.pdf differ

UCC git Repository :: git.ucc.asn.au